Engineering a surface functionalized Pt@SnS2/Ti3C2Tx MXene sensor with humidity tolerance and high sensitivity at room temperature for NH3 detection

被引:1
|
作者
Ranjith, Kugalur Shanmugam [1 ]
Sonwal, Sonam [2 ]
Mohammadi, Ali [1 ]
Raju, Ganji Seeta Rama [1 ]
Huh, Yun Suk [2 ]
Han, Young-Kyu [1 ]
机构
[1] Dongguk Univ Seoul, Dept Energy & Mat Engn, Seoul 04620, South Korea
[2] Inha Univ, Dept Biol Sci & Bioengn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
TI3C2TX MXENE; GAS SENSORS;
D O I
10.1039/d4ta07108e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of hierarchical heterostructures that can detect volatile organic compounds (VOCs) at room temperature with good selectivity, sensitivity, and humidity tolerance is an intriguing and practically useful area of research. In this study, Pt@SnS2/MXene with a 0D@2D/2D hybrid structure was successfully fabricated by selectively etching Ti3C2Tx MXene with HF and following this with SnS2 solvothermal growth and finally decorating with Pt nanoparticles. Decoration of few layered vertically grown SnS2 nanoflakes with rich active sites provided an electron reservoir that promoted the selectivity, conductivity, and stability of the MXene-based ternary heterostructure during sensing applications. Post-functionalization with trimethoxypropylsilane (TES) formed a monolayer on the ternary heterostructure of Pt@SnS2/MXene by self-assembly, improved moisture resistance and sensitivity, and maximized sensor durability. Interfacial contact of the TES functionalized mixed metal interface facilitated charge transport and the spectral separation required for NH3 sensing at room temperature (Ra/Rg = 22.7, 10 ppm NH3), which was 14.2, 12.6, 8.1, and 3.3-fold greater higher than those of MXene, SnS2, SnS2/MXene, and Pt@SnS/MXene, respectively. The functionalized heterostructure exhibited high response, remarkable relative response (98.7%), a low theoretical detection limit (23 ppb), and long-term stability (nearly 30 days). Furthermore, TES functionalization protected the sensor from humidity and the sensor sensitivity was ascribed to a Schottky barrier and p-n junction at the Pt@SnS2/MXene heterostructure interface. Superior sensing responses were retained at various humidity levels due to the hydrophobicity of TES alkyl chains. In addition, TES captured free electrons on the sensing surface, and thus, maximized the width of the electron depletion layer. The functionalized Pt@SnS2/MXene heterostructure-based template offers a potential means of constructing highly sensitive and durable gas sensors suitable for practical NH3 responsive, flexible wearable electronics.
引用
收藏
页码:2950 / 2964
页数:15
相关论文
共 50 条
  • [1] Sensitivity-Enhanced, Room-Temperature Detection of NH3 with Alkalized Ti3C2Tx MXene
    Tan, Yi
    Xu, Jinxia
    Li, Qiliang
    Zhang, Wanting
    Lu, Chong
    Song, Xingjuan
    Liu, Lingyun
    Chen, Ying
    NANOMATERIALS, 2024, 14 (08)
  • [2] Room temperature and anti-humidity NH3 detection based on GaN nanorods/Ti3C2Tx MXene composite gas sensor
    Han, Dan
    Liu, Zhihua
    Liu, Lulu
    Li, Donghui
    Chen, Yi
    Wang, Hongtao
    Zhao, Li
    Wang, Weidong
    Sang, Shengbo
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [3] Layered Ti3C2Tx MXene/CuO spindles composites for NH3 detection at room-temperature
    Liu, Miao
    Ding, Yongling
    Lu, Zhichen
    Song, Peng
    Wang, Qi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [4] Computational Screening of Ti3C2TX MXene by Controlling the Functionalized Catalyst for NH3 Gas Sensor
    Zhang, Hanmei
    Liu, Xin
    Liu, Chi
    Shen, Tao
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2023, 220 (06):
  • [5] Surface engineering of Ti3C2Tx MXene by oxygen plasma irradiation as room temperature ethanol sensor
    Wang, Zijing
    Wang, Fen
    Hermawan, Angga
    Zhu, Jianfeng
    Yin, Shu
    FUNCTIONAL MATERIALS LETTERS, 2022, 15 (01)
  • [6] Room temperature NH3 gas sensor based on In(OH)3/Ti3C2Tx nanocomposites
    Zhao, Zhihua
    Yao, Longqi
    Zhang, Shuaiwen
    Shi, Qingsheng
    Rahmatullah, Abu Bakker Md
    Wu, Lan
    MICROCHIMICA ACTA, 2024, 191 (07)
  • [7] A fuel cell type gas sensor based on Pt/Ti3C2Tx MXene for highly selective detection of NH3
    Li, Bingyang
    Liu, Jiaxin
    Lin, Zhen
    Mai, Chunwei
    Cao, Anjie
    Yao, Dong
    Chen, Zhanshen
    Qu, Fengdong
    MATERIALS LETTERS, 2025, 383
  • [8] Sensing performance of α-Fe2O3/Ti3C2Tx MXene nanocomposites to NH3 at room temperature
    Liu, Miao
    Ji, Jun
    Song, Peng
    Wang, Jiaxin
    Wang, Qi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [9] Heterostructured Ti3C2Tx/carbon nanohorn-based gas sensor for NH3 detection at room temperature
    Han, Yutong
    Ding, Yuan
    Yao, Yu
    Li, Zhanhong
    Zhu, Zhigang
    FRONTIERS IN MATERIALS, 2024, 11
  • [10] NiO/Ti3C2Tx MXene nanocomposites sensor for ammonia gas detection at room temperature
    Yang, Jiacheng
    Gui, Yingang
    Wang, Yunfeng
    He, Shasha
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2023, 119 : 476 - 484