Transcriptomic Analysis of Air-Liquid Interface Culture in Human Lung Organoids Reveals Regulators of Epithelial Differentiation

被引:0
|
作者
Kim, Jieun [1 ,2 ]
Eo, Eun-Young [1 ]
Kim, Bokyong [1 ]
Lee, Heetak [3 ]
Kim, Jihoon [3 ,4 ]
Koo, Bon-Kyoung [3 ]
Kim, Hyung-Jun [1 ]
Cho, Sukki [5 ]
Kim, Jinho [6 ,7 ,8 ]
Cho, Young-Jae [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Dept Internal Med, Div Pulm & Crit Care Med,Bundang Hosp, Seongnam 13620, South Korea
[2] CHA Univ, Dept Biomed Sci, Seongnam 13488, South Korea
[3] Inst for Basic Sci Korea, Ctr Genome Engn, Daejeon 34126, South Korea
[4] Catholic Univ Korea, Dept Med & Biol Sci, Bucheon 14662, South Korea
[5] Seoul Natl Univ, Bundang Hosp, Dept Thorac & Cardiovasc Surg, Seongnam 13620, South Korea
[6] Seoul Natl Univ, Bundang Hosp, Dept Genom Med, Seongnam 13620, South Korea
[7] Seoul Natl Univ, Precis Med Ctr, Future Innovat Res Div, Bundang Hosp, Seongnam 13620, South Korea
[8] Seoul Natl Univ, Bundang Hosp, Coll Med, Dept Lab Med, Seongnam 13620, South Korea
基金
新加坡国家研究基金会;
关键词
airway epithelium; air-liquid interface; ciliated cells; differentiation; single-cell RNA-sequencing; STEM-CELLS; PROMOTES; CYCLE;
D O I
10.3390/cells13231991
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To develop in vitro respiratory models, it is crucial to identify the factors involved in epithelial cell differentiation. In this study, we comprehensively analyzed the effects of air-liquid interface (ALI) culture on epithelial cell differentiation using single-cell RNA sequencing (scRNA-seq). ALI culture induced a pronounced shift in cell composition, marked by a fivefold increase in ciliated cells and a reduction of more than half in basal cells. Transcriptional signatures associated with epithelial cell differentiation, analyzed using iPathwayGuide software, revealed the downregulation of VEGFA and upregulation of CDKN1A as key signals for epithelial differentiation. Our findings highlight the efficacy of the ALI culture for replicating the human lung airway epithelium and provide valuable insights into the crucial factors that influence human ciliated cell differentiation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Attachment culture of cortical organoids at the microwell air-liquid interface
    Tang, Jiyuan
    Zheng, Honghui
    Feng, Yilin
    Zeng, Junhong
    Ma, Shaohua
    STAR PROTOCOLS, 2023, 4 (03):
  • [2] Characterizing the differentiation process of oviductal epithelial cells in air-liquid interface (ALI) culture
    Chen, S.
    Einspanier, R.
    Schoen, J.
    REPRODUCTION IN DOMESTIC ANIMALS, 2015, 50 : 12 - 12
  • [3] Perfusion culture maintained with an air-liquid interface to stimulate epithelial cell organization in renal organoids in vitro
    Sachiko Sekiya
    Tetsutaro Kikuchi
    Tatsuya Shimizu
    BMC Biomedical Engineering, 1 (1):
  • [4] Oxygenation as a driving factor in epithelial differentiation at the air-liquid interface
    Kouthouridis, Sonya
    Goepp, Julie
    Martini, Carolina
    Matthes, Elizabeth
    Hanrahan, John W.
    Moraes, Christopher
    INTEGRATIVE BIOLOGY, 2021, 13 (03) : 61 - 72
  • [5] EPITHELIAL-CELL INTERACTION IN AIR-LIQUID INTERFACE CULTURE
    TCHAO, R
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY, 1989, 25 (05): : 460 - 465
  • [6] Air-liquid interface culture and modified culture medium promote the differentiation of human induced pluripotent stem cells into intestinal epithelial cells
    Shirai, Kotaro
    Qiu, Shimeng
    Minowa, Hanako
    Hashita, Tadahiro
    Iwao, Takahiro
    Matsunaga, Tamihide
    DRUG METABOLISM AND PHARMACOKINETICS, 2024, 55
  • [7] Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface
    Andrea C. Schamberger
    Claudia A. Staab-Weijnitz
    Nikica Mise-Racek
    Oliver Eickelberg
    Scientific Reports, 5
  • [8] Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface
    Schamberger, Andrea C.
    Staab-Weijnitz, Claudia A.
    Mise-Racek, Nikica
    Eickelberg, Oliver
    SCIENTIFIC REPORTS, 2015, 5
  • [9] Intestinal epithelial culture under an air-liquid interface: a tool for studying human and mouse esophagi
    Yokobori, T.
    Suzuki, S.
    Miyazaki, T.
    Sohda, M.
    Sakai, M.
    Tanaka, N.
    Ozawa, D.
    Hara, K.
    Honjo, H.
    Altan, B.
    Fukuchi, M.
    Ishii, H.
    Iwatsuki, M.
    Sugimachi, K.
    Sudo, T.
    Iwaya, T.
    Nishida, N.
    Mimori, K.
    Kuwano, H.
    Mori, M.
    DISEASES OF THE ESOPHAGUS, 2016, 29 (07) : 843 - 847
  • [10] Human keratinocyte culture on macroporous carriers at the air-liquid interface
    Linnau, EK
    Burt, AM
    Katinger, H
    Handa-Corrigan, A
    ANIMAL CELL TECHNOLOGY: PRODUCTS FROM CELLS, CELLS AS PRODUCTS, 1999, : 535 - 537