Diagnostic checking of periodic vector autoregressive time series models with dependent errors

被引:0
|
作者
Mainassara, Yacouba Boubacar [1 ,2 ]
Ursu, Eugen [3 ,4 ]
机构
[1] Univ Polytech Hauts de France, INSA Hauts de France, CERAMATHS Lab Mat Ceram & Math, F-59313 Valenciennes, France
[2] Univ Bourgogne Franche Comte, Lab Math Besancon, UMR CNRS 6623, 16 Route Gray, F-25030 Besancon, France
[3] Univ Bordeaux, Bordeaux Sch Econ, 16 Ave Leon Duguit, Bat H2, F-33608 Pessac, France
[4] West Univ Timisoara, ECREB, Timisoara, Romania
关键词
Diagnostic checking; Portmanteau tests; Residual autocorrelation; Weak periodic VAR; MULTIVARIATE PORTMANTEAU TEST; STRUCTURAL VARMA MODELS; RESIDUAL AUTOCORRELATIONS; ASYMPTOTIC PROPERTIES; HETEROSKEDASTICITY; FORMS; FIT;
D O I
10.1016/j.jmva.2024.105379
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study the asymptotic behavior of the residual autocorrelations for periodic vector autoregressive time series models (PVAR henceforth) with uncorrelated but dependent innovations (i.e., weak PVAR). We then deduce the asymptotic distribution of the Ljung-BoxMcLeod modified Portmanteau statistics for weak PVAR models. In Monte Carlo experiments, we illustrate that the proposed test statistics have reasonable finite sample performance. When the innovations exhibit conditional heteroscedasticity or other forms of dependence, it appears that the standard test statistics (under independent and identically distributed innovations) are generally unreliable, overrejecting, or underrejecting severely, while the proposed test statistics offer satisfactory levels. The proposed methodology is employed in the analysis of two river flows.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On modelling and diagnostic checking of vector periodic autoregressive time series models
    Ursu, Eugen
    Duchesne, Pierre
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (01) : 70 - 96
  • [2] Adjustment models for multivariate geodetic time series with vector-autoregressive errors
    Kargoll, Boris
    Dorndorf, Alexander
    Omidalizarandi, Mohammad
    Paffenholz, Jens-Andre
    Alkhatib, Hamza
    JOURNAL OF APPLIED GEODESY, 2021, 15 (03) : 243 - 267
  • [3] Diagnostic checking of multivariate nonlinear time series models with martingale difference errors
    Chabot-Halle, Dominique
    Duchesne, Pierre
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (08) : 997 - 1005
  • [4] Mixture periodic autoregressive time series models
    Shao, Q
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (06) : 609 - 618
  • [5] Estimating weak periodic vector autoregressive time series
    Yacouba Boubacar Maïnassara
    Eugen Ursu
    TEST, 2023, 32 : 958 - 997
  • [6] Robust modelling of periodic vector autoregressive time series
    Ursu, Eugen
    Pereau, Jean-Christophe
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 155 : 93 - 106
  • [7] Periodic autoregressive models for time series with integrated seasonality
    Baragona, Roberto
    Battaglia, Francesco
    Cucina, Domenico
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 694 - 712
  • [8] Modeling Compositional Time Series with Vector Autoregressive Models
    Kynclova, Petra
    Filzmoser, Peter
    Hron, Karel
    JOURNAL OF FORECASTING, 2015, 34 (04) : 303 - 314
  • [9] Functional coefficient autoregressive models for vector time series
    Harvill, Jane L.
    Ray, Bonnie K.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (12) : 3547 - 3566
  • [10] Diagnostic checking for the adequacy of nonlinear time series models
    Hong, YM
    Lee, TH
    ECONOMETRIC THEORY, 2003, 19 (06) : 1065 - 1121