ADDRESSING MULTIPLE FACETS OF BIAS AND UNCERTAINTY IN CONTINENTAL-SCALE BIODIVERSITY DATABASES

被引:0
|
作者
Marchetto, Elisa [1 ]
Livornese, Martina [1 ]
Sabatini, Francesco maria [1 ,2 ]
Tordoni, Enrico [3 ]
Da Re, Daniele [4 ]
Lenoir, Jonathan [5 ]
Testolin, Riccardo [1 ]
Bacaro, Giovanni [6 ]
Gatti, Roberto cazzolla [1 ]
Chiarucci, Alessandro [1 ]
Foody, Giles m. [7 ]
Gabor, Lukas [8 ,9 ]
Groom, Quentin [10 ]
Iaria, Jacopo [1 ]
Malavasi, Marco [11 ]
Moudry, Vitezslav [8 ]
Santovito, Diletta [1 ]
Simova, Petra [8 ]
Zannini, Piero [1 ]
Rocchini, Duccio [1 ,8 ]
机构
[1] Alma Mater Studiorum Univ Bologna, Dept Biol Geol & Environm Sci, Via Irnerio 42, I-40126 Bologna, Italy
[2] Czech Univ Life Sci Prague, Fac Forestry & Wood Sci, Dept Forest Ecol, Kamycka 129, Prague 16521, Czech Republic
[3] Univ Tartu, Inst Ecol & Earth Sci, J Liivi 2, EE-50409 Tartu, Estonia
[4] Univ Trento, Ctr Agricolture Food Environm, Via Edmund Mach 1, I-38098 San Michele All Adige, Italy
[5] Univ Picardie Jules Verne, CNRS, UMR 7058, Ecol & Dynam Syst Anthropises EDYSAN, 1 rue Louvels, F-80037 Amiens, France
[6] Univ Trieste, Dept Life Sci, Via L Giorgieri 10, I-34127 Trieste, Italy
[7] Univ Nottingham, Sch Geog, Univ Pk, Nottingham NG7 2RD, England
[8] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Spatial Sci, Kamycka 129, Prague 16500, Czech Republic
[9] Yale Univ, New Haven, CT 06520 USA
[10] Meise Bot Garden, Nieuwelaan 38, B-1860 Meise, Belgium
[11] Univ Sassari, Dept Chem Phys Math & Nat Sci, Via Vienna 2, I-07100 Sassari, Italy
关键词
biodiversity; community composition; data quality; spatial bias; taxonomic bias; temporal bias; temporal uncertainty; SPECIES RICHNESS; SAMPLING BIAS; COMPLETENESS; EXTRAPOLATION; RAREFACTION; SHORTFALLS; DIVERSITY; KNOWLEDGE; COVERAGE; GAPS;
D O I
10.5281/zenodo.12179384
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The availability of biodiversity databases is expanding at unprecedented rates. Nevertheless, species occurrence data can be intrinsically biased and contain uncertainties that impact the accuracy and reliability of biodiversity estimates. In this study, we developed a reproducible framework to assess three dimensions of bias-taxonomic, spatial, and temporal-as well as temporal uncertainty associated with data collections. We utilized the vegetation plot data located in Europe, from sPlotOpen, an open-access database, as a case study. The metrics proposed for estimating bias include completeness of the species richness for taxonomic bias, Nearest Neighbor Index for spatial bias, and Pielou's index for temporal bias. Additionally, we introduced a new method based on a negative exponential curve to model the temporal decay in biodiversity data, aiming to quantify temporal uncertainty. Finally, we assessed the sampling bias considering the influence of various spatial variables (i.e, road density, human population count, Natura 2000 network and topographic roughness). We discovered that the facets of bias and the temporal uncertainty varied throughout Europe, as did the different roles played by spatial variables in determining biases. sPlotOpen showed a clustered distribution of the vegetation plots, and an uneven distribution in sampling completeness, year of sampling and temporal uncertainty. The facets of bias were significantly explained mainly by the presence of Natura 2000 network and marginally by the human population count. These results suggest that employing an efficient procedure to examine biases and uncertainties in data collections can enhance data quality and provide more reliable biodiversity estimates.
引用
收藏
页码:56 / 77
页数:22
相关论文
共 17 条
  • [1] Uncertainty in continental-scale temperature predictions
    Stott, PA
    Kettleborough, JA
    Allen, MR
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (02)
  • [2] Continental-Scale Governance and the Hastening of Loss of Australia's Biodiversity
    Ritchie, Euan G.
    Bradshaw, Corey J. A.
    Dickman, Chris R.
    Hobbs, Richard
    Johnson, Christopher N.
    Johnston, Emma L.
    Laurance, William F.
    Lindenmayer, David
    McCarthy, Michael A.
    Nimmo, Dale G.
    Possingham, Hugh P.
    Pressey, Robert L.
    Watson, David M.
    Woinarski, John
    CONSERVATION BIOLOGY, 2013, 27 (06) : 1133 - 1135
  • [3] Continental-scale bias-corrected climate and hydrological projections for Australia
    Peter, Justin
    Vogel, Elisabeth
    Sharples, Wendy
    Bende-Michl, Ulrike
    Wilson, Louise
    Hope, Pandora
    Dowdy, Andrew
    Kociuba, Greg
    Srikanthan, Sri
    Duong, Vi Co
    Roussis, Jake
    Matic, Vjekoslav
    Khan, Zaved
    Oke, Alison
    Turner, Margot
    Baron-Hay, Stuart
    Johnson, Fiona
    Mehrotra, Raj
    Sharma, Ashish
    Thatcher, Marcus
    Azarvinand, Ali
    Thomas, Steven
    Boschat, Ghyslaine
    Donnelly, Chantal
    Argent, Robert
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2024, 17 (07) : 2755 - 2781
  • [4] Representing Uncertainty in Continental-Scale Gridded Precipitation Fields for Agrometeorological Modeling
    de Wit, A. J. W.
    de Bruin, S.
    Torfs, P. J. J. F.
    JOURNAL OF HYDROMETEOROLOGY, 2008, 9 (06) : 1172 - 1190
  • [5] Fine-Grain Predictions Are Key to Accurately Represent Continental-Scale Biodiversity Patterns
    Cohen, Jeremy M.
    Jetz, Walter
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2025, 34 (01):
  • [6] Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines
    Evan H. Campbell Grant
    David A. W. Miller
    Benedikt R. Schmidt
    Michael J. Adams
    Staci M. Amburgey
    Thierry Chambert
    Sam S. Cruickshank
    Robert N. Fisher
    David M. Green
    Blake R. Hossack
    Pieter T. J. Johnson
    Maxwell B. Joseph
    Tracy A. G. Rittenhouse
    Maureen E. Ryan
    J. Hardin Waddle
    Susan C. Walls
    Larissa L. Bailey
    Gary M. Fellers
    Thomas A. Gorman
    Andrew M. Ray
    David S. Pilliod
    Steven J. Price
    Daniel Saenz
    Walt Sadinski
    Erin Muths
    Scientific Reports, 6
  • [7] Quantitative evidence for the effects of multiple drivers on continental-scale amphibian declines
    Grant, Evan H. Campbell
    Miller, David A. W.
    Schmidt, Benedikt R.
    Adams, Michael J.
    Amburgey, Staci M.
    Chambert, Thierry
    Cruickshank, Sam S.
    Fisher, Robert N.
    Green, David M.
    Hossack, Blake R.
    Johnson, Pieter T. J.
    Joseph, Maxwell B.
    Rittenhouse, Tracy A. G.
    Ryan, Maureen E.
    Waddle, J. Hardin
    Walls, Susan C.
    Bailey, Larissa L.
    Fellers, Gary M.
    Gorman, Thomas A.
    Ray, Andrew M.
    Pilliod, David S.
    Price, Steven J.
    Saenz, Daniel
    Sadinski, Walt
    Muths, Erin
    SCIENTIFIC REPORTS, 2016, 6
  • [8] A sensitivity and uncertainty analysis of a continental-scale water quality model of pathogen pollution in African rivers
    Reder, Klara
    Alcamo, Joseph
    Floerke, Martina
    ECOLOGICAL MODELLING, 2017, 351 : 129 - 139
  • [9] Quantifying uncertainty in simulated streamflow and runoff from a continental-scale monthly water balance model
    Bock, Andrew R.
    Farmer, William H.
    Hay, Lauren E.
    ADVANCES IN WATER RESOURCES, 2018, 122 : 166 - 175
  • [10] Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change
    Synes, Nicholas W.
    Osborne, Patrick E.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2011, 20 (06): : 904 - 914