The rising prevalence of metabolic diseases is a significant global health concern. Beyond lifestyle management, targeting key molecules involved in metabolic regulation is essential. C1q/TNF-related protein 6 (CTRP6) is notably associated with glucose and lipid metabolism, with numerous studies highlighting its regulatory functions in metabolic diseases. This review summarizes the current knowledge on CTRP6, focusing on its gene expression profiles, protein structure, gene regulation, and role in metabolic diseases. CTRP6 is widely expressed across various tissues and features four distinct domains, with the C1q domain predicted to bind to its receptor. Notably, serum levels of CTRP6 are significantly elevated in patients with obesity and type 2 diabetes. In these conditions, adipose tissue serves as a key source of CTRP6 and its involvement in adipose tissue expansion, inflammation, and nutrient sensing has been observed in several studies. CTRP6 is also implicated in type 1 diabetes, gestational diabetes mellitus, and diabetic complications, particularly diabetic nephropathy. Although some studies have suggested that CTRP6 has protective roles in atherosclerotic cell models, myocardial infarction rat models, and ischemia/reperfusion injury mouse models, methodological issues such as unreliable antibodies and unstrict controls make it difficult to draw accurate conclusions from these studies. Patients with polycystic ovary syndrome (PCOS) exhibit elevated serum levels of CTRP6, although its direct impact on PCOS phenotypes remains unclear. In conclusion, CTRP6 emerges as a promising therapeutic target for metabolic diseases. A deeper understanding of CTRP6 will empower the scientific community to develop effective interventions to address the increasing prevalence of these diseases.