Existence of bounded solutions for a non-periodic sublinear equation with an obstacle

被引:0
|
作者
Peng, Yaqun [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519000, Peoples R China
关键词
non-periodic forcing; sublinear equation with an obstacle; bounded solutions; implicit function theorem; non-periodic twist maps' theory; PERIODIC-SOLUTIONS; TWIST MAPS;
D O I
10.1088/1361-6544/ad8c8f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the sublinear equation with an obstacle {(sic) + u(alpha) =p(t), 0 < alpha < 1, {u >= 0, {u (t(0))= 0 (sic) (t(0)(+)) = - (sic) (t(0)(-)) has infinitely many bounded solutions for non-periodic forcing p by the implicit function theorem and the non-periodic twist maps' theory established by Kunze and Ortega.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for a non-periodic Schrodinger equation
    Zhao, Fukun
    Zhao, Leiga
    Ding, Yanheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (11) : 3671 - 3678
  • [2] Algebras with non-periodic bounded modules
    Erdmann, Karin
    JOURNAL OF ALGEBRA, 2017, 475 : 308 - 326
  • [3] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Wei DING
    Ding Bian QIAN
    Chao WANG
    Zhi Guo WANG
    Acta Mathematica Sinica, 2016, 32 (05) : 621 - 632
  • [4] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Wei DING
    Ding Bian QIAN
    Chao WANG
    Zhi Guo WANG
    Acta Mathematica Sinica,English Series, 2016, (05) : 621 - 632
  • [5] Existence of periodic solutions of sublinear Hamiltonian systems
    Wei Ding
    Ding Bian Qian
    Chao Wang
    Zhi Guo Wang
    Acta Mathematica Sinica, English Series, 2016, 32 : 621 - 632
  • [6] Existence of Periodic Solutions of Sublinear Hamiltonian Systems
    Ding, Wei
    Qian, Ding Bian
    Wang, Chao
    Wang, Zhi Guo
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (05) : 621 - 632
  • [7] EXISTENCE OF SOLUTIONS FOR NON-PERIODIC SUPERLINEAR SCHRODINGER EQUATIONS WITHOUT (AR) CONDITION
    Wan Lili
    Tang Chunlei
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1559 - 1570
  • [8] Non-periodic solutions of the Goła̧b–Schinzel type functional equation
    Jacek Chudziak
    Results in Mathematics, 2023, 78
  • [9] Non-periodic solutions of the Golab-Schinzel type functional equation
    Chudziak, Jacek
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [10] NUMERICAL STUDY OF PROBLEM OF DIFFRACTION AT A NON-PERIODIC OBSTACLE
    HUGONIN, JP
    PETIT, R
    OPTICS COMMUNICATIONS, 1977, 20 (03) : 360 - 364