Bolstering the Rate Performance of Co-Free Ni-Rich Layered Oxide Cathode through a Rapid Heating Method

被引:0
|
作者
Mitra, Soumyadip [1 ]
Mudiyanselage, Thilini Rathnayaka [2 ]
Wang, Xijue [2 ]
Lohar, Gaurav [3 ]
Dubal, Deepak [2 ]
Sudakar, Chandran [1 ]
机构
[1] Indian Inst Technol Madras, Dept Phys, Multifunct Mat Lab, Chennai 600036, India
[2] Queensland Univ Technol, Ctr Mat Sci, Sch Chem & Phys, Brisbane, Qld 4000, Australia
[3] Lal Bahadur Shastri Coll Arts Sci & Commerce, Dept Phys, Satara 415002, India
关键词
Lithium-ion battery; Ni-rich layered oxide; Co-free cathode; Microwave; rate capability; electrochemical properties; METAL OXIDE; ION; TRANSITION; XPS;
D O I
10.1002/batt.202400782
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The growing demand for high-energy density Ni-rich cathode materials, driven by the rise in lithium-ion batteries for electric vehicles and electronics necessitates fast, efficient production methods. Traditional methods for Ni-rich cathodes are energy-intensive, taking up to 24 hours, which increases costs and CO2 emissions. In contrast, this study introduces a Co-free Ni-rich layered oxide cathode (LiNi0.9Fe0.05Al0.05O2 (NFA)) synthesis using a rapid microwave heating technique. This method takes just 2.5 hours, including heating and dwell time, while consuming minimal electricity. The microwave-annealed cathodes exhibits a well-ordered layered structure with fewer defects compared to those produced by traditional calcination (21 h). Furthermore, these cathodes display superior discharge capacities across all C-rates (e. g. 157 mAh g-1 at 1 C-rate and 129 mAh g-1 at 10 C-rate) and retain 78.1 % specific capacity after 100 cycles at high current density (1 C-rate). This study paves the way for the rapid, energy-efficient synthesis of high-performance cathode materials for advanced lithium-ion batteries.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Co-free Ni-rich layered cathode with long-term cycling stability
    Yoon, Chong S.
    Sun, Yang-Kook
    NATURE ENERGY, 2022, 7 (10) : 914 - 915
  • [3] High performance and low air sensitivity for Ni-rich Co-free cathode materials
    Peng, Zhongdong
    Li, Huan
    Zhao, Baibin
    Hu, Guorong
    Du, Ke
    Cao, Yanbing
    SOLID STATE IONICS, 2024, 411
  • [4] Calcium-induced pinning effect for high-performance Co-free Ni-rich NMA layered cathode
    Ni, Lianshan
    Chen, Hongyi
    Gao, Jinqiang
    Mei, Yu
    Wang, Haoji
    Zhu, Fangjun
    Huang, Jiangnan
    Zhang, Baichao
    Xu, Wei
    Song, Bai
    Zhang, Yangyang
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Zhou, Yige
    Ji, Xiaobo
    NANO ENERGY, 2023, 115
  • [5] Correlating the phase evolution and anionic redox in Co-Free Ni-Rich layered oxide cathodes
    Li, Ning
    Sallis, Shawn
    Papp, Joseph K.
    McCloskey, Bryan D.
    Yang, Wanli
    Tong, Wei
    NANO ENERGY, 2020, 78
  • [6] Alleviating Anisotropic Volume Variation at Comparable Li Utilization during Cycling of Ni-Rich, Co-Free Layered Oxide Cathode Materials
    Goonetilleke, Damian
    Riewald, Felix
    Kondrakov, Aleksandr O.
    Janek, Juergen
    Brezesinski, Torsten
    Bianchini, Matteo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (40): : 16952 - 16964
  • [7] Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping
    Sun, Huabin
    Cao, Zhilin
    Wang, Tengrui
    Lin, Rui
    Li, Yuyu
    Liu, Xi
    Zhang, Lulu
    Lin, Feng
    Huang, Yunhui
    Luo, Wei
    MATERIALS TODAY ENERGY, 2019, 13 (145-151) : 145 - 151
  • [8] Understanding the Insight Mechanism of Chemical-Mechanical Degradation of Layered Co-Free Ni-Rich Cathode Materials: A Review
    Li, Hang
    Wang, Li
    Song, Youzhi
    Wu, Yingqiang
    Zhang, Hao
    Du, Aimin
    He, Xiangming
    SMALL, 2023, 19 (32)
  • [9] Tungsten-based Li-rich rock salt stabilized Co-free Ni-rich layered oxide cathodes
    Li, Bing-Chen
    Wang, Mei
    Han, Bing-Yuan
    Zhang, Yuan-Xia
    Wang, Da-Jian
    Chen, Jing-Jing
    Mao, Zhi-Yong
    Dong, Chen-Long
    RARE METALS, 2025, 44 (02) : 901 - 911
  • [10] Multifunctional surface modification with Co-free spinel structure on Ni-rich cathode material for improved electrochemical performance
    Kim, Sunwook
    Na, Sungmin
    Kim, Joonchul
    Jun, Tae Hwan
    Oh, Myoung Hwan
    Min, Kyoungmin
    Park, Kwangjin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 918