The increasing prevalence of hip joint diseases is closely linked to improved living standards and an aging population, leading to a rise in conditions like degenerative arthritis and severe hip injuries. These conditions cause significant pain and functional impairments, greatly reducing the quality of life for affected individuals. Total hip arthroplasty (THA) has become a well-established surgical intervention to address these debilitating conditions. Within the realm of hip replacement materials, ceramics have garnered attention for their exceptional wear resistance and ability to minimize complications, such as bone dissolution caused by wear particles. Ceramics, such as alumina and zirconia, offer biocompatibility and low wear rates, making them favourable choices for hip prostheses. However, despite these advantages, the use of ceramics in hip replacements is not without challenges. Issues such as ceramic fragmentation and abnormal joint noise have been noted, posing significant obstacles to their widespread adoption. This review explores the advancements in hip replacement technology with a particular focus on ceramic materials. It delves into the properties that make ceramics suitable for this application, such as their biocompatibility and mechanical strength, enhanced through advanced manufacturing techniques. Additionally, the review addresses the ongoing challenges, including strategies to mitigate the risk of fragmentation through material toughening and improved prosthesis design. Furthermore, it examines the phenomenon of abnormal joint noise, proposing solutions that involve refinements in implant design, surgical techniques, and post-operative patient management. The aim of this review is to provide a comprehensive overview of current advancements and future directions in the use of ceramic materials in hip replacement technology, highlighting the potential for improved patient outcomes and the need for continued research and innovation in this field.