A note on spacelike weighted translating solitons in weighted Lorentzian product spaces

被引:0
|
作者
de Lima, Henrique Fernandes [1 ]
机构
[1] Univ Fed Campina Grande, Dept Matemat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
Weighted Lorentzian product spaces; Spacelike weighted translating solitons; Bakry-& Eacute; mery-Ricci tensor; Polynomial <italic>f</italic>-volume growth; <italic>f</italic>-Parabolicity; Calabi-Bernstein type results; MEAN-CURVATURE FLOW; MAXIMAL GRAPHS; HYPERSURFACES; RIGIDITY;
D O I
10.1007/s13366-025-00789-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply some maximum principles to establish rigidity results concerning complete spacelike weighted translating solitons immersed in a weighted Lorentzian product space R1xPfn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_1\times {\mathbb {P}}<^>n_f$$\end{document} endowed with a potential function f and whose Riemannian base Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}<^>n$$\end{document} is supposed to be complete and with nonnegative Bakry-& Eacute;mery-Ricci tensor. As applications, we derive new Calabi-Bernstein type results for entire spacelike weighted translating graphs constructed over Pn.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}<^>n.$$\end{document}
引用
收藏
页数:17
相关论文
共 50 条