Maximal-simultaneous Approximation Properties of Faber Series in Weighted Bergman Space

被引:0
|
作者
Israfilov, D. M. [1 ,2 ]
Otarov, Kh. [3 ]
机构
[1] Balikesir Univ, Fac Sci & Letters, Dept Math, Balikesir, Turkiye
[2] Minist Sci & Educ, Inst Math & Mech, Baku, Azerbaijan
[3] K Zhubanov Aktobe Reg Univ, Phys & Math Fac, Dept Math, Aktobe, Kazakhstan
来源
AZERBAIJAN JOURNAL OF MATHEMATICS | 2025年 / 15卷 / 01期
关键词
quasidisc; generalized Faber series; maximal convergence; simultaneous approximation; weighted Bergman spaces; CONVERGENCE; POLYNOMIALS; BOUNDARY; LEBESGUE; DOMAINS;
D O I
10.59849/2218-6816.2025.1.128
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, maximal-simultaneous approximation properties of generalized Faber series in weighted Bergman space, defined on bounded continuums of the complex plane, are studied. The error of this approximation in dependence of the best approximation number and the parameters of considered canonical domains is estimated.
引用
收藏
页码:128 / 143
页数:16
相关论文
共 19 条