COUNTABLY COMPACT EXTENSIONS AND CARDINAL CHARACTERISTICS OF THE CONTINUUM

被引:0
|
作者
Bardyla, Serhii [1 ]
Nyikos, Peter [2 ]
Zdomskyy, Lyubomyr [3 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ South Carolina, Dept Math, Columbia, SC USA
[3] Vienna Univ Technol TU WIEN, Inst Discrete Math & Geometry, Vienna, Austria
关键词
Nyikos space; countably compact; pseudocompact; embedding; cardinal characteristics of the continuum; SPACES;
D O I
10.1017/jsl.2025.13
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that the existence of certain first-countable compact-like extensions is equivalent to the equality between corresponding cardinal characteristics of the continuum. For instance, b= s= c if and only if every regular first-countable space of weight < c can be densely embedded into a regular first-countable countably compact space.
引用
收藏
页数:27
相关论文
共 50 条