An enhanced slime mould algorithm with triple strategy for engineering design optimization

被引:0
|
作者
Wang, Shuai [1 ]
Zhang, Junxing [1 ,2 ]
Li, Shaobo [1 ,3 ]
Wu, Fengbin [1 ]
Li, Shaoyang [4 ]
机构
[1] Guizhou Univ, State Key Lab Publ Big Data, Guiyang 550025, Peoples R China
[2] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China
[3] Guizhou Inst Technol, Guiyang 550025, Peoples R China
[4] Guizhou Univ, Sch Mech Engn, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
slime mould algorithm; adaptive t-distribution elite mutation strategy; ranking-based dynamic learning strategy; mechanical engineering design optimization; evolutionary algorithms; SWARM OPTIMIZATION; SEARCH; EVOLUTION;
D O I
10.1093/jcde/qwae089
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces an enhanced slime mould algorithm (EESMA) designed to address critical challenges in engineering design optimization. The EESMA integrates three novel strategies: the Laplace logistic sine map technique, the adaptive t-distribution elite mutation mechanism, and the ranking-based dynamic learning strategy. These enhancements collectively improve the algorithm's search efficiency, mitigate convergence to local optima, and bolster robustness in complex optimization tasks. The proposed EESMA demonstrates significant advantages over many conventional optimization algorithms and performs on par with, or even surpasses, several advanced algorithms in benchmark tests. Its superior performance is validated through extensive evaluations on diverse test sets, including IEEE CEC2014, IEEE CEC2020, and IEEE CEC2022, and its successful application in six distinct engineering problems. Notably, EESMA excels in solving economic load dispatch problems, highlighting its capability to tackle challenging optimization scenarios. The results affirm that EESMA is a competitive and effective tool for addressing complex optimization issues, showcasing its potential for widespread application in engineering and beyond.
引用
收藏
页码:36 / 74
页数:39
相关论文
共 50 条
  • [1] A novel version of slime mould algorithm for global optimization and real world engineering problems Enhanced slime mould algorithm
    Ornek, Bulent Nafi
    Aydemir, Salih Berkan
    Duzenli, Timur
    Ozak, Bilal
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 198 : 253 - 288
  • [2] A multi-strategy improved slime mould algorithm for global optimization and engineering design problems
    Deng, Lingyun
    Liu, Sanyang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [3] Multi-Strategy Enhanced Slime Mould Algorithm for Optimization Problems
    Duan, Zaixin
    Qian, Xuezhong
    Song, Wei
    IEEE ACCESS, 2025, 13 : 7850 - 7871
  • [4] Enhanced Multi-Strategy Slime Mould Algorithm for Global Optimization Problems
    Dong, Yuncheng
    Tang, Ruichen
    Cai, Xinyu
    BIOMIMETICS, 2024, 9 (08)
  • [5] A Multi-strategy Slime Mould Algorithm for Solving Global Optimization and Engineering Optimization Problems
    Wang, Wen-chuan
    Tao, Wen-hui
    Tian, Wei-can
    Zang, Hong-fei
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (5-6) : 3865 - 3889
  • [6] An efficient weighted slime mould algorithm for engineering optimization
    Sun, Qibo
    Wang, Chaofan
    Chen, Yi
    Heidari, Ali Asghar
    Chen, Huiling
    Liang, Guoxi
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [7] A novel improved slime mould algorithm for engineering design
    Liu, Jingsen
    Fu, Yiwen
    Li, Yu
    Zhou, Huan
    SOFT COMPUTING, 2023, 27 (17) : 12181 - 12210
  • [8] An Improved Elite Slime Mould Algorithm for Engineering Design
    Yuan, Li
    Ji, Jianping
    Liu, Xuegong
    Liu, Tong
    Chen, Huiling
    Chen, Deng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 415 - 454
  • [9] A novel improved slime mould algorithm for engineering design
    Jingsen Liu
    Yiwen Fu
    Yu Li
    Huan Zhou
    Soft Computing, 2023, 27 : 12181 - 12210
  • [10] Enhanced slime mould algorithm with multiple mutation strategy and restart mechanism for global optimization
    Zheng, Rong
    Jia, Heming
    Wang, Shuang
    Liu, Qingxin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (06) : 5069 - 5083