Segmentation of Nano-Particles from SEM Images Using Transfer Learning and Modified U-Net

被引:0
|
作者
Sanan, V. Sowmya [1 ]
Isaac, R. S. Rimal [1 ]
机构
[1] Noorul Islam Ctr Higher Educ, Dept Nanotechnol, Thuckalay, Tamil Nadu, India
关键词
Nanomaterial; segmentation; ResNet; 50; modified UNet; transfer learning; SEM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
owing to their distinctive features, are crucial across numerous scientific domains, especially in materials science and nanotechnology. Precise segmentation of Scanning Electron Microscope (SEM) images is essential for evaluating attributes such as nanoparticle dimensions, morphology, and distribution. Conventional image segmentation techniques frequently prove insufficient for managing the intricate textures of SEM images, resulting in a laborious and imprecise process. In this research, a modified U-Net architecture is presented to tackle this challenge, utilizing a ResNet50 backbone pre-trained on ImageNet. This model utilizes the robust feature extraction abilities of ResNet50 alongside the effective segmentation performance of U-Net, hence improving both accuracy and computational efficiency in TiO2 nanoparticle segmentation. The suggested model was assessed using performance metrics including accuracy, precision, recall, IoU, and Dice Coefficient. The results indicated a high segmentation accuracy, demonstrated by a Dice score of 0.946 and an IoU of 0.897, with little variability reflected in standard deviations of 0.002071 and 0.003696, respectively, over 200 epochs. The comparison with existing methods demonstrates that the proposed model surpasses previous approaches by attaining enhanced segmentation accuracy. The modified U-Net design serves as an excellent technique for accurate nanoparticle segmentation in SEM images, providing substantial enhancements compared to traditional approaches. This progress indicates the model's potential for wider applications in nanomaterial research and characterization, where precise and efficient segmentation is essential for analysis.
引用
收藏
页码:662 / 677
页数:16
相关论文
共 50 条
  • [2] Mosaic Images Segmentation using U-net
    Fenu, Gianfranco
    Medvet, Eric
    Panfilo, Daniele
    Pellegrino, Felice Andrea
    ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 485 - 492
  • [3] Nipple Segmentation and Localization Using Modified U-Net on Breast Ultrasound Images
    Zhuang, Zhemin
    Raj, Alex Noel Joseph
    Jain, Atyant
    Ruban, Nersisson
    Chaurasia, Saksham
    Li, Nan
    Lakshmanan, M.
    Murugappan, M.
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2019, 9 (09) : 1827 - 1837
  • [4] Brain Tumor Segmentation in MRI Images Using A Modified U-Net Model
    Vo, Thong
    Dave, Pranjal
    Bajpai, Gaurav
    Kashef, Rasha
    Khan, Naimul
    2022 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (IEEE ICDH 2022), 2022, : 29 - 33
  • [5] Segmentation of Palm Vein Images Using U-Net
    Marattukalam, Felix
    Abdulla, Waleed H.
    2020 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2020, : 64 - 70
  • [6] Polyp Segmentation in Colonoscopy Images using U-Net and Cyclic Learning Rate
    Bulut, Betul
    Butun, Ertan
    Kaya, Mehmet
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1149 - 1152
  • [7] Wound Segmentation with U-Net Using a Dual Attention Mechanism and Transfer Learning
    Niri, Rania
    Zahia, Sofia
    Stefanelli, Alessio
    Sharma, Kaushal
    Probst, Sebastian
    Pichon, Swann
    Chanel, Guillaume
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [8] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [9] Modified U-Net architecture for semantic segmentation of diabetic retinopathy images
    Sambyal, Nitigya
    Saini, Poonam
    Syal, Rupali
    Gupta, Varun
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (03) : 1094 - 1109
  • [10] Improved Brain Tumor Segmentation in MR Images with a Modified U-Net
    Alquran, Hiam
    Alslatie, Mohammed
    Rababah, Ali
    Mustafa, Wan Azani
    APPLIED SCIENCES-BASEL, 2024, 14 (15):