Point-cloud based machine learning for classifying rare events in the Active-Target Time Projection Chamber

被引:0
|
作者
Dey, Poulomi [1 ,2 ]
Anthony, Adam K. [1 ,3 ,4 ]
Hunt, Curtis [1 ]
Kuchera, Michelle P. [5 ,6 ]
Ramanujan, Raghuram [6 ]
Lynch, William G. [1 ,3 ]
Tsang, ManYee Betty [1 ,3 ]
Wieske, Joseph M. [1 ,3 ]
Ajongbah, Jessica W. [1 ,2 ]
Beceiro-Novo, Saul [1 ]
Brown, Kyle W. [1 ,2 ]
Chajecki, Zbigniew [7 ]
Cook, Kaitlin J. [1 ,8 ]
Gangestad, Skyler [4 ]
Ginter, Tom [1 ]
Kendziorski, Bergen [1 ]
Teh, Fanurs Chi Eh [1 ]
Wong, Hoting [7 ,9 ]
机构
[1] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[4] High Point Univ, Dept Phys & Astron, High Point, NC 27268 USA
[5] Davidson Coll, Dept Phys, Davidson, NC 28035 USA
[6] Davidson Coll, Dept Math & Comp Sci, Davidson, NC 28035 USA
[7] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA
[8] Australian Natl Univ, Res Sch Phys, Dept Nucl Phys & Accelerator Applicat, Canberra, Australia
[9] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
关键词
Time Projection Chambers; Fission; Machine learning; Event Classification; PointNet; Anomaly Detection; RANDOM SAMPLE CONSENSUS; CLASSIFICATION; MODEL;
D O I
10.1016/j.nima.2024.170002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this work, we assess the use of machine learning to classify fission events in the Active Target Time Projection Chamber (AT-TPC) using data from an experiment performed at the National Superconducting Cyclotron Laboratory at Michigan State University. The experiment produces an extremely large quantity of data, less than 3% of which are fission events. Therefore, separating fission events from the background beam events is critical to an efficient analysis. A heuristic method was developed to classify events as Fission or Non-Fission based on hand-tuned parameters. However, this heuristic method places 5% of all events into an Unlabeled category, including 15% of all fission events. We present a PointNet model trained on the data labeled by the heuristic method. This model is then used to generate labels for the events in the Unlabeled category. Using the heuristic and machine learning methods together, we can successfully identify 99% of fission events.
引用
收藏
页数:9
相关论文
共 13 条
  • [1] Commissioning of the Active-Target Time Projection Chamber
    Bradt, J.
    Bazin, D.
    Abu-Nimeh, F.
    Ahn, T.
    Ayyad, Y.
    Novo, S. Beceiro
    Carpenter, L.
    Cortesi, M.
    Kuchera, M. P.
    Lynch, W. G.
    Mittig, W.
    Rost, S.
    Watwood, N.
    Yurkon, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 875 : 65 - 79
  • [2] Search for α-Cluster Structure in Exotic Nuclei with the Prototype Active-Target Time-Projection Chamber
    Fritsch, A.
    Ayyad, Y.
    Bazin, D.
    Beceiro-Novo, S.
    Bradt, J.
    Carpenter, L.
    Cortesi, M.
    Mittig, W.
    Suzuki, D.
    Ahn, T.
    Kolata, J. J.
    Howard, A. M.
    Becchetti, F. D.
    Wolff, M.
    PROCEEDINGS OF THE 14TH INTERNATIONAL SYMPOSIUM ON NUCLEI IN THE COSMOS (NIC2016), 2016,
  • [3] The Prototype Active-Target Time-Projection Chamber used with TwinSol radioactive-ion beams
    Ahn, T.
    Bardayan, D. W.
    Bazin, D.
    Novo, S. Beceiro
    Becchetti, F. D.
    Bradt, J.
    Brodeur, M.
    Carpenter, L.
    Chajecki, Z.
    Cortesi, M.
    Fritsch, A.
    Hall, M. R.
    Hall, O.
    Jensen, L.
    Kolata, J. J.
    Lynch, W.
    Mittig, W.
    O'Malley, P.
    Suzuki, D.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2016, 376 : 321 - 325
  • [4] Breakup, transfer, and fusion studies of exotic "halo" nuclei using an active-target time projection chamber.
    Kolata, J. J.
    Bazin, Daniel
    Suzuki, Daisuke
    Mittig, Wolfgang
    5TH INTERNATIONAL CONFERENCE FUSION11, 2011, 17
  • [5] Fusion studies with low-intensity radioactive ion beams using an active-target time projection chamber
    Kolata, J. J.
    Howard, A. M.
    Mittig, W.
    Ahn, T.
    Bazin, D.
    Becchetti, F. D.
    Beceiro-Novo, S.
    Chajecki, Z.
    Febbrarro, M.
    Fritsch, A.
    Lynch, W. G.
    Roberts, A.
    Shore, A.
    Torres-Isea, R. O.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 830 : 82 - 87
  • [6] Fusion studies of low-intensity exotic beams using an active-target time-projection chamber
    Howard, Alan M.
    Kolata, James J.
    Mittig, Wolfgang
    Ahn, Tan
    Bazin, Daniel
    Becchetti, Frederick D.
    Beceiro-Novo, Saul
    Febbraro, Michael
    Fritsch, Adam
    Kohley, Zachary
    Meisel, Zachary
    Roberts, Amy
    Torres-Isea, Ramone O.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [7] The Notre-Dame Cube: An active-target time-projection chamber for radioactive beam experiments and detector development
    Ahn, T.
    Randhawa, J. S.
    Aguilar, S.
    Blankstein, D.
    Delgado, L.
    Dixneuf, N.
    Henderson, S. L.
    Jackson, W.
    Jensen, L.
    Jin, S.
    Koci, J.
    Kolata, J. J.
    Lai, J.
    Levano, J.
    Li, X.
    Mubarak, A.
    O'Malley, P. D.
    Martin, S. Ramirez
    Renaud, M.
    Serikow, M. Z.
    Tollefson, A.
    Wilson, J.
    Yan, L.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1025
  • [8] Machine learning method for 12C event classification and reconstruction in the active target time-projection chamber
    Wu, Huangkai
    Wang, Youjing
    Wang, Yumiao
    Deng, Xiangai
    Cao, Xiguang
    Fang, Deqing
    Ma, Weihu
    He, Wanbing
    Fu, Changbo
    Ma, Yugang
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2023, 1055
  • [9] 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation
    Li, Heyang Thomas
    Todd, Zachary
    Bielski, Nikolas
    Carroll, Felix
    VISUAL COMPUTER, 2022, 38 (05): : 1759 - 1774
  • [10] 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation
    Heyang Thomas Li
    Zachary Todd
    Nikolas Bielski
    Felix Carroll
    The Visual Computer, 2022, 38 : 1759 - 1774