Composite Magnetic Filaments: From Fabrication to Magnetic Hyperthermia Application

被引:0
|
作者
Alexandridis, Athanasios [1 ,2 ]
Argyros, Apostolos [3 ,4 ]
Kyriazopoulos, Pavlos [1 ,2 ]
Genitseftsis, Ioannis [1 ,2 ]
Okkalidis, Nikiforos [5 ,6 ]
Michailidis, Nikolaos [3 ,4 ]
Angelakeris, Makis [1 ,2 ]
Makridis, Antonios [1 ,2 ]
机构
[1] Aristotle Univ Thessaloniki, Dept Condensed Matter & Mat Phys, Thessaloniki 54124, Greece
[2] Balkan Ctr, Ctr Interdisciplinary Res & Innovat, Lab Magnet Nanostruct Characterizat Technol & Appl, Bldg B,10th km Thessaloniki Thermi Rd, Thessaloniki 57001, Greece
[3] Aristotle Univ Thessaloniki, Sch Engn, Mech Engn Dept, Phys Met Lab, Thessaloniki 54124, Greece
[4] Balkan Ctr, Ctr Res & Dev Adv Mat CERDAM, Ctr Interdisciplinary Res & Innovat, Bldg B,10th Km Thessaloniki Thermi Rd, Thessaloniki 57001, Greece
[5] Aristotle Univ Thessaloniki, AHEPA Univ Hosp, Fac Hlth Sci, Med Phys & Digital Innovat Lab,Sch Med, Thessaloniki 54636, Greece
[6] Morphe, Lagkada 33, Thessaloniki 54629, Greece
关键词
composite magnetic filaments; bone tissue magnetic scaffolds; 4D printing; magnetic hyperthermia; nanocomposite materials; MECHANICAL-PROPERTIES; SIZE; NANOPARTICLES; KINETICS;
D O I
10.3390/mi16030328
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The printing of composite magnetic filaments using additive manufacturing techniques has emerged as a promising approach for biomedical applications, particularly in bone tissue engineering and magnetic hyperthermia treatments. This study focuses on the synthesis of nanocomposite ferromagnetic filaments and the fabrication of bone tissue scaffolds with time-dependent properties. Three classes of polylactic acid-based biocompatible polymers-EasyFil, Tough and Premium-were combined with magnetite nanoparticles (Fe3O4) at concentrations of 10 wt% and 20 wt%. Extruded filaments were evaluated for microstructural integrity, printed dog-bone-shaped specimens were tested for elongation and mechanical properties, and cylindrical scaffolds were analyzed for magnetic hyperthermia performance. The tensile strength of EasyFil polylactic acid decreased from 1834 MPa (0 wt% Fe3O4) to 1130 MPa (-38%) at 20 wt% Fe3O4, while Premium polylactic acid showed a more moderate reduction from 1800 MPa to 1567 MPa (-13%). The elongation at break was reduced across all samples, with the highest decrease observed in EasyFil polylactic acid (from 42% to 26%, -38%). Magnetic hyperthermia performance, measured by the specific absorption rate, demonstrated that the 20 wt% Fe3O4 scaffolds achieved specific absorption rate values of 2-7.5 W/g, depending on polymer type. Our results show that by carefully selecting the right thermoplastic material, we can balance both mechanical integrity and thermal efficiency. Among the tested materials, Tough polylactic acid composites demonstrated the most promising potential for magnetic hyperthermia applications, providing optimal heating performance without significantly compromising scaffold strength. These findings offer critical insights into designing magnetic scaffolds optimized for tissue regeneration and hyperthermia-based therapies.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Fabrication of magnetic micromachine for local hyperthermia
    Sendoh, M
    Ishiyama, K
    Arai, KI
    Jojo, M
    Sato, F
    Matsuki, H
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 3359 - 3361
  • [2] Magnetic filaments for anisotropic composite polymers
    Ourry, Laurence
    Le Roy, Damien
    Mekkaoui, Samir
    Douillard, Thierry
    Deman, Anne-Laure
    Salles, Vincent
    NANOTECHNOLOGY, 2020, 31 (39)
  • [3] Application of Magnetosomes in Magnetic Hyperthermia
    Usov, Nikolai A.
    Gubanova, Elizaveta M.
    NANOMATERIALS, 2020, 10 (07) : 1 - 15
  • [4] Fabrication and potential application of a di-functional magnetic system: magnetic hyperthermia therapy and drug delivery
    Shen, B. B.
    Gao, X. C.
    Yu, S. Y.
    Ma, Y.
    Ji, C. H.
    CRYSTENGCOMM, 2016, 18 (07): : 1133 - 1138
  • [5] Composite magnetic 3D-printing filament fabrication protocol opens new perspectives in magnetic hyperthermia
    Makridis, A.
    Okkalidis, N.
    Trygoniaris, D.
    Kazeli, K.
    Angelakeris, M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (28)
  • [6] Magnetic nanoparticles of zinc and calcium for magnetic hyperthermia application
    Argentina Jasso-Teran, Rosario
    Alicia Cortes-Hernandez, Dora
    Javier Sanchez-Fuentes, Hector
    Yajaira Reyes-Rodriguez, Pamela
    Elena de Leon-Prado, Laura
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2016, 25 (42): : 89 - 98
  • [7] Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application
    Hedayatnasab, Ziba
    Abnisa, Faisal
    Daud, Wan Mohd Ashri Wan
    MATERIALS & DESIGN, 2017, 123 : 174 - 196
  • [8] Heat Generation Abilities of Magnetic Thermosensitive Composite Particles for Hyperthermia and Chemotherapy Application
    Fan Shao-Yong
    Huang Ke-Di
    Tang Qing-Mei
    Huang Zhi-Rong
    Ai Fan-Rong
    Chen Wei-Gao
    Yan Xi-Luan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2014, 30 (05) : 1167 - 1173
  • [9] Characterization of Cobalt Ferrite Magnetic Nanoparticles for Magnetic Hyperthermia Application
    Nagy, Lubos
    Zelenakova, Adriana
    Szucsova, Jaroslava
    Mielnik, Natalia
    Hrubovcak, Pavol
    APPLIED PHYSICS OF CONDENSED MATTER, APCOM 2022, 2023, 2778
  • [10] Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia
    Mody, Vicky V.
    Singh, Ajay
    Wesley, Bevins
    EUROPEAN JOURNAL OF NANOMEDICINE, 2013, 5 (01) : 11 - 21