Validated clinical prediction model for mortality from COVID-19 in hospitalized patients. What is truly important?

被引:0
|
作者
Hernandez, I. Iniesta [1 ,2 ]
Rodriguez, H. Madrona [1 ,2 ]
Gonzalez, O. Redondo [3 ]
de Suso, M. Torralba Gonzalez [4 ,5 ]
机构
[1] Ctr Salud Infante Juan Manuel, Med Familia, Murcia, Spain
[2] Casa Socorro Alcala Henares, Med Familia, Madrid, Spain
[3] Hosp Univ Guadalajara, Serv Med Prevent, Guadalajara, Spain
[4] Hosp Univ Guadalajara, Serv Med Interna, Unidad Invest, Guadalajara, Spain
[5] Univ Alcala, Dept Med & Especial Med, IDISCAM, Madrid, Spain
来源
MEDICINA DE FAMILIA-SEMERGEN | 2025年 / 51卷 / 02期
关键词
COVID-19; SARS-CoV-2; Pandemic; Mortality; Elderly;
D O I
10.1016/j.semerg.2025.102471
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Objective: To develop and validate a clinical prediction model aimed at improving resource management and determining the prognosis of patients hospitalized with COVID-19. Materials and methods: A retrospective, single-center cohort study conducted at the University Hospital of Guadalajara, including 1,043 patients hospitalized with COVID-19 between March and May 2020. Data were extracted from hospital records and anonymized. Demographic, clinical, laboratory, radiological, and therapeutic variables were collected, and statistical analysis was performed to identify factors associated with mortality. Logistic regression and Cox models were employed to evaluate mortality predictors. Validation was conducted by comparing ROC curves. Results: The median age of the patients was 70.4 years (P25-P75: 59-84), with 59.2% being male, and a mortality rate of 23.2%. The most common comorbidities were hypertension (54.8%), dyslipidemia (36.3%), and diabetes (27.1%). Independent predictors of mortality included age over 80years (OR: 6.18), chronic obstructive pulmonary disease (OR: 2.35), oxygen saturation < 90% (OR: 1.7), multilobar pneumonia (OR: 2.4), and elevated LDH levels (OR: 1.2). The area under the curve (AUC) for the derivation model was 0.805 (P < .001), and for the validation model, the AUC was 0.78 (P < .001). Conclusions: Advanced age, chronic obstructive pulmonary disease, low oxygen saturation, multilobar pneumonia, and elevated LDH levels are significantly associated with increased mortality risk. The validated predictive model enables classification of patients into high- or low-risk groups, thereby facilitating improved clinical decision-making and resource management. (c) 2025 Sociedad Espanola de Medicos de Atencion Primaria (SEMERGEN). Published by Elsevier Espana, S.L.U. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
    Razavian, Narges
    Major, Vincent J.
    Sudarshan, Mukund
    Burk-Rafel, Jesse
    Stella, Peter
    Randhawa, Hardev
    Bilaloglu, Seda
    Chen, Ji
    Nguy, Vuthy
    Wang, Walter
    Zhang, Hao
    Reinstein, Ilan
    Kudlowitz, David
    Zenger, Cameron
    Cao, Meng
    Zhang, Ruina
    Dogra, Siddhant
    Harish, Keerthi B.
    Bosworth, Brian
    Francois, Fritz
    Horwitz, Leora I.
    Ranganath, Rajesh
    Austrian, Jonathan
    Aphinyanaphongs, Yindalon
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [2] A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
    Narges Razavian
    Vincent J. Major
    Mukund Sudarshan
    Jesse Burk-Rafel
    Peter Stella
    Hardev Randhawa
    Seda Bilaloglu
    Ji Chen
    Vuthy Nguy
    Walter Wang
    Hao Zhang
    Ilan Reinstein
    David Kudlowitz
    Cameron Zenger
    Meng Cao
    Ruina Zhang
    Siddhant Dogra
    Keerthi B. Harish
    Brian Bosworth
    Fritz Francois
    Leora I. Horwitz
    Rajesh Ranganath
    Jonathan Austrian
    Yindalon Aphinyanaphongs
    npj Digital Medicine, 3
  • [3] Urine biomarkers for the prediction of mortality in COVID-19 hospitalized patients
    Daniel Morell-Garcia
    David Ramos-Chavarino
    Josep M. Bauça
    Paula Argente del Castillo
    Maria Antonieta Ballesteros-Vizoso
    Luis García de Guadiana-Romualdo
    Cristina Gómez-Cobo
    J. Albert Pou
    Rocío Amezaga-Menéndez
    Alberto Alonso-Fernández
    Isabel Llompart
    Ana García-Raja
    Scientific Reports, 11
  • [4] Urine biomarkers for the prediction of mortality in COVID-19 hospitalized patients
    Morell-Garcia, Daniel
    Ramos-Chavarino, David
    Bauca, Josep M.
    Argente del Castillo, Paula
    Antonieta Ballesteros-Vizoso, Maria
    Garcia de Guadiana-Romualdo, Luis
    Gomez-Cobo, Cristina
    Albert Pou, J.
    Amezaga-Menendez, Rocio
    Alonso-Fernandez, Alberto
    Llompart, Isabel
    Garcia-Raja, Ana
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [5] Machine learning prediction of COVID-19 mortality in cancer patients.
    Dienstmann, Rodrigo
    Menezes, Marcia
    e Silva, Matheus Costa
    Cruz, Heloisa
    Paes, Rafael
    da Silva, Jussaine Alves
    Messias, Anna Carolina R.
    De Marchi, Pedro
    Canedo, Jorge Alexandre
    De Melo, Andreia Cristina
    Jacome, Alexandre A.
    Reinert, Tomas
    Figueiredo Ferreira, Barbara Sodre
    Mathias, Clarissa
    Barrios, Carlos H.
    Ferreira, Carlos G. M.
    Ferrari, Bruno Lemos
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [6] Clinical and Laboratory Predictors of Mortality in Hospitalized COVID-19 Patients
    Riahi, Taghi
    Shokri, Sima
    Faiz, Seyed Hamid Reza
    Hemati, Karim
    Mousavie, Seyed Hamzeh
    Baghestani, Amir
    Khazaeian, Ali
    Hassanlouei, Babak
    IRANIAN RED CRESCENT MEDICAL JOURNAL, 2021, 23 (05)
  • [7] Development of a Predictive Model for Mortality in Hospitalized Patients With COVID-19
    Niu, Yuanyuan
    Zhan, Zan
    Li, Jianfeng
    Shui, Wei
    Wang, Changfeng
    Xing, Yanli
    Zhang, Changran
    DISASTER MEDICINE AND PUBLIC HEALTH PREPAREDNESS, 2022, 16 (04) : 1398 - 1406
  • [8] Is It Possible To Predict Mortality Using Initial Data Of Adult Patients Hospitalized with COVID-19? A Mortality Prediction Model in the Early Phase of COVID-19
    Karabay, Oguz
    Inci, Mustafa Baran
    Ogutlu, Aziz
    Ekerbicer, Hasan
    Guclu, Ertugrul
    Dheir, Hamad
    Yaylaci, Selcuk
    Karabay, Meltem
    Guner, Necip Gokhan
    Koroglu, Mehmet
    Karacan, Alper
    Cokluk, Erdem
    Tomak, Yakup
    KONURALP TIP DERGISI, 2021, 13 (01): : 36 - 44
  • [9] A Prediction Model for Clinical Outcomes of COVID-19 Hospitalized Patients: Construction and Accuracy Assessment
    Chen, Han
    Chen, Meng-jia
    Ling, Li-qun
    Yang, Jian-rong
    Huang, Hai-xia
    Zhou, Jia-jing
    Yang, Ning
    Zhang, Mei-juan
    CLINICAL LABORATORY, 2024, 70 (03) : 491 - 497
  • [10] An interpretable mortality prediction model for COVID-19 patients
    Yan, Li
    Zhang, Hai-Tao
    Goncalves, Jorge
    Xiao, Yang
    Wang, Maolin
    Guo, Yuqi
    Sun, Chuan
    Tang, Xiuchuan
    Jing, Liang
    Zhang, Mingyang
    Huang, Xiang
    Xiao, Ying
    Cao, Haosen
    Chen, Yanyan
    Ren, Tongxin
    Wang, Fang
    Xiao, Yaru
    Huang, Sufang
    Tan, Xi
    Huang, Niannian
    Jiao, Bo
    Cheng, Cheng
    Zhang, Yong
    Luo, Ailin
    Mombaerts, Laurent
    Jin, Junyang
    Cao, Zhiguo
    Li, Shusheng
    Xu, Hui
    Yuan, Ye
    NATURE MACHINE INTELLIGENCE, 2020, 2 (05) : 283 - +