Study on the arrangement of CO2 sorbent and catalyst for integrated CO2 capture and methanation

被引:1
|
作者
Lv, Zongze [1 ]
Han, Junqiang [1 ]
Deng, Tao [1 ]
Gao, Chang [1 ]
Li, Jianan [1 ]
Qin, Changlei [1 ]
机构
[1] Chongqing Univ, Sch Energy & Power Engn, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated CO2 capture and utilization; ICCU-methanation; High-temperature CO2 sorbent; LI4SIO4; SORBENTS; CARBON CAPTURE; FLUE-GAS; CONVERSION; POWER; PERFORMANCE;
D O I
10.1016/j.seppur.2024.129679
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Integrated CO2 capture and utilization (ICCU) is an emerging technology to reduce CO2 emissions by greatly simplifying the processes of conventional CO2 capture and utilization. In particular, ICCU-methanation could directly convert the low-concentration CO2 into CH4 using hydrogen from new energy electricity, representing an efficient Power-to-Gas route. CO2 adsorption/catalytic materials play a crucial role for the operation of ICCU-methanation, and it is more feasible to scale up material production and avoid components interference by directly combining the sorbent and catalyst. However, it is necessary to reveal the effect of different arrangements of sorbent and catalyst on reaction characteristics of ICCU-methanation. In the work, the matching of K2CO3-doped Li4SiO4 sorbent with various supported Ni-based catalyst was tested and four arrangements of sorbent and catalyst particles in a fixed-bed were investigated to understand the influences on ICCU-methanation. Results show that the presence of catalyst accelerates CO2 supply by sorbent and achieves quicker methanation, and the promotion effect becomes more obvious with a closer contact between the sorbent and catalyst. Under optimized conditions, ICCU-methanation of uniformly mixed K-Li4SiO4 and Ni/Al2O3 shows an excellent performance with very stable CO2 conversion of 95.58% and CH4 selectivity of 93.29% during cyclic reactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CO2 Capture from Syngas Using Solid CO2 Sorbent and WGS Catalyst
    Lee, Joong Beom
    Eom, Tae Hyoung
    Park, Keun Woo
    Ryu, Jungho
    Baek, Jeom-In
    Kim, Kyeongsook
    Yang, Seug-Ran
    Ryu, Chong Kul
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1133 - 1138
  • [2] Ru/K2CO3-MgO catalytic sorbent for integrated CO2 capture and methanation at low temperatures
    Jo, Seongbin
    Son, Han Dong
    Kim, Tae-Young
    Woo, Jin Hyeok
    Ryu, Do Yeong
    Kim, Jae Chang
    Lee, Soo Chool
    Gilliard-AbdulAziz, Kandis Leslie
    CHEMICAL ENGINEERING JOURNAL, 2023, 469
  • [3] Feasibility Study of In Situ CO2 Capture on an Integrated Catalytic CO2 Sorbent for Hydrogen Production from Methane
    Belova, Anuta Anuta G.
    Yegulalp, Tuncel M.
    Yee, Christopher T.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 749 - 755
  • [4] METHANATION OF CO2 ON SUPPORTED RHODIUM CATALYST
    SOLYMOSI, F
    ERDOHELYI, A
    BANSAGI, T
    MAGYAR KEMIAI FOLYOIRAT, 1982, 88 (01): : 18 - 27
  • [5] METHANATION OF CO2 ON SUPPORTED RHODIUM CATALYST
    SOLYMOSI, F
    ERDOHELYI, A
    BANSAGI, T
    JOURNAL OF CATALYSIS, 1981, 68 (02) : 371 - 382
  • [6] The Ni/ZrO2 catalyst and the methanation of CO and CO2
    da Silva, Daniela C. D.
    Letichevsky, Sonia
    Borges, Luiz E. P.
    Appel, Lucia G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 8923 - 8928
  • [7] The Nanofibrous CaO Sorbent for CO2 Capture
    Rodaev, Vyacheslav V.
    Razlivalova, Svetlana S.
    Tyurin, Alexander, I
    Vasyukov, Vladimir M.
    NANOMATERIALS, 2022, 12 (10)
  • [8] KINETICS OF METHANATION OF CO AND CO2 ON A NICKEL-CATALYST
    HERWIJNEN, TV
    DOESBURG, HV
    DEJONG, WA
    JOURNAL OF CATALYSIS, 1973, 28 (03) : 391 - 402
  • [9] Tailoring Rh content on dendritic fibrous silica alumina catalyst for enhanced CO2 capture in catalytic CO2 methanation
    Siang, T. J.
    Jalil, A. A.
    Fatah, N. A. A.
    Chung, M. E.
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01):
  • [10] Highly stable FeNiMnCaO catalyst for integrated CO2 capture and hydrogenation to CO
    Zhao, Peipei
    Ma, Bing
    Tian, Jingqing
    Li, Xiaohong
    Zhao, Chen
    CHEMICAL ENGINEERING JOURNAL, 2024, 482