We introduce a novel semi-analytic method for solving singularly perturbed reaction-diffusion problems in a smooth domain using neural network architectures. To manage steep solution transitions near the boundary, we utilize the boundary-fitted coordinates and perform boundary layer analysis to construct a corrector function which describes the singular behavior of the solution near the boundary. By integrating the boundary layer corrector into the conventional PINN structure, we propose our new sl-PINNs (singular-layer Physics-Informed Neural Networks). The sl-PINN framework is specifically designed to capture sharp transitions inside boundary layers, significantly improving the approximation accuracy for solutions under small perturbation parameters. The computational results of various simulations in this article demonstrate the superior performance of sl-PINNs over conventional PINNs in handling such problems.
机构:
Zagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, EgyptZagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, Egypt
Ragb, O.
论文数: 引用数:
h-index:
机构:
Salah, Mohamed
Matbuly, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Zagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, EgyptZagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, Egypt
Matbuly, M. S.
Ersoy, H.
论文数: 0引用数: 0
h-index: 0
机构:
Akdeniz Univ, Dept Mech Engn, Div Mech, Antalya, TurkeyZagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, Egypt
Ersoy, H.
Civalek, O.
论文数: 0引用数: 0
h-index: 0
机构:
Akdeniz Univ, Civil Engn Dept, Antalya, Turkey
China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, TaiwanZagazig Univ, Fac Engn, Dept Engn Math & Phys, Zagazig, Egypt
机构:
Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R ChinaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
Yi, Taishan
Chen, Yuming
论文数: 0引用数: 0
h-index: 0
机构:
Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, CanadaSun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China