This study addresses the prevalent challenges of inefficiency and suboptimal quality in indoor 3D scene generation and rendering by proposing a parameter-tuning strategy for 3D Gaussian Splatting (3DGS). Through a systematic quantitative analysis of various performance indicators under differing resolution conditions, threshold settings for the average magnitude of spatial position gradients, and adjustments to the scaling learning rate, the optimal parameter configuration for the 3DGS model, specifically tailored for indoor modeling scenarios, is determined. Firstly, utilizing a self-collected dataset, a comprehensive comparison was conducted among COLLI-SION-MAPping (abbreviated as COLMAP (V3.7), an open-source software based on Structure from Motion and Multi-View Stereo (SFM-MVS)), Context Capture (V10.2) (abbreviated as CC, a software utilizing oblique photography algorithms), Neural Radiance Fields (NeRF), and the currently renowned 3DGS algorithm. The key dimensions of focus included the number of images, rendering time, and overall rendering effectiveness. Subsequently, based on this comparison, rigorous qualitative and quantitative evaluations are further conducted on the overall performance and detail processing capabilities of the 3DGS algorithm. Finally, to meet the specific requirements of indoor scene modeling and rendering, targeted parameter tuning is performed on the algorithm. The results demonstrate significant performance improvements in the optimized 3DGS algorithm: the PSNR metric increases by 4.3%, and the SSIM metric improves by 0.2%. The experimental results prove that the improved 3DGS algorithm exhibits superior expressive power and persuasiveness in indoor scene rendering.