Regulating defects in sulfur-doped Bi4O5I2 and constructing S-scheme heterojunctions with g-C3N4 to enhance photocatalytic antibiotic degradation

被引:1
|
作者
Liu, Xinting [1 ]
Chen, Si [2 ]
Tantai, Xujing [1 ]
Dai, Xinyi [1 ,2 ]
Shao, Shengyu [1 ]
Wu, Meixuan [1 ]
Sun, Pengfei [1 ]
Dong, Xiaoping [1 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Chem & Chem Engn, Key Lab Surface & Interface Sci Polymer Mat Zhejia, Hangzhou 310018, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313000, Peoples R China
关键词
Heterojunction construction; Antibiotic degradation; Reaction mechanism; Toxicity evaluation; TETRACYCLINE; NITROGEN; DECOMPOSITION; PERFORMANCE; ADSORPTION; NANOSHEETS; MECHANISM; BIOI;
D O I
10.1016/j.seppur.2025.132001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Photocatalysis technology presents a promising green pathway for eliminating antibiotic residues, however, the current performance falls short of practicality. A solvothermal method was employed to successfully prepare sulfur-defect-modified Bi4O5I2/CN S-scheme heterojunction composites in this work, which exhibit remarkable efficacy in the degradation of tetracycline antibiotics under visible light. Compared with Bi4O5I2, the optimized S-Bi4O5I2/CN(10 %) exhibited the best photocatalytic degradation performance of tetracycline hydrochloride (TC, 50 mg/L), achieving a 100 % degradation rate within 10 min. Additionally, it exhibited the broad applicability of the photocatalyst in practical application, effectively degrading various tetracycline antibiotics and maintaining good degradation efficiency across a wide range of pollutant concentrations and pH fluctuations. The catalyst is highly resistant to anion interference and achieves efficient degradation in a fixed-bed reactor, exhibiting high sensitivity. The composition of S-scheme heterojunctions was confirmed through XPS electron transfer, radical quenching experiments, and DFT theory calculations, while the intricate reaction mechanism occurring at the heterojunction interface of S-Bi4O5I2 and g-C3N4 was also elaborated. The degradation path of TC was investigated by using LC-MS and the toxicity assessments and mung bean germination experiments against byproducts also indicate the photocatalytic process can effectively decrease the toxicity and the potential risk of TC to the environment. This work presents a feasible and effective approach to enhance the photocatalytic performance of Bi4O5I2 through heterogeneous structure construction, demonstrating outstanding practical application in eliminating antibiotic residues in the environment.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] ZnAl2O4/sulfur-doped g-C3N4 S-scheme heterojunction for efficient photocatalytic degradation of malachite green
    Jin, Qiyu
    Wang, Shi
    Lei, Chunsheng
    Liu, Shihao
    Feng, Siyang
    Ma, Tianji
    Lang, Zhaocheng
    OPTICAL MATERIALS, 2023, 136
  • [2] Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline
    Chen, Zi-Jun
    Guo, Hai
    Liu, Hui-Yun
    Niu, Cheng-Gang
    Huang, Da-Wei
    Yang, Ya-Ya
    Liang, Chao
    Li, Lu
    Li, Jin-Cheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 438
  • [3] Construction of dual S-scheme Ag2CO3/Bi4O5I2/g-C3N4 heterostructure photocatalyst with enhanced visible-light photocatalytic degradation for tetracycline
    Chen, Zi-Jun
    Guo, Hai
    Liu, Hui-Yun
    Niu, Cheng-Gang
    Huang, Da-Wei
    Yang, Ya-Ya
    Liang, Chao
    Li, Lu
    Li, Jin-Cheng
    Chemical Engineering Journal, 2022, 438
  • [4] Constructing Ag-TiO2-g-C3N4 S-scheme heterojunctions for photocatalytic degradation of malachite green
    Yang, Daixiong
    Xia, Yangwen
    Xiao, Tian
    Xu, Zipan
    Lei, Yifan
    Jiao, Yu
    Zhu, Xiaodong
    Feng, Wei
    OPTICAL MATERIALS, 2025, 159
  • [5] Sulfur-Doped g-C3N4 Heterojunctions for Efficient Visible Light Degradation of Methylene Blue
    Perez-Torres, Andres F.
    Hernandez-Barreto, Diego F.
    Bernal, Valentina
    Giraldo, Liliana
    Moreno-Pirajan, Juan Carlos
    da Silva, Edjan Alves
    Alves, Maria do Carmo Martins
    Morais, Jonder
    Hernandez, Yenny
    Cortes, Maria T.
    Macias, Mario A.
    ACS OMEGA, 2023, 8 (50): : 47821 - 47834
  • [6] Designing g-C3N4/NiFe2O4 S-scheme heterojunctions for efficient photocatalytic degradation of Rhodamine B and tetracycline hydrochloride
    Mishra, Subhasish
    Acharya, Lopamudra
    Sharmila, S.
    Sanjay, Kali
    Acharya, Rashmi
    APPLIED SURFACE SCIENCE ADVANCES, 2024, 24
  • [7] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jizhou Jiang
    Zhiguo Xiong
    Haitao Wang
    Guodong Liao
    Saishuai Bai
    Jing Zou
    Pingxiu Wu
    Peng Zhang
    Xin Li
    JournalofMaterialsScience&Technology, 2022, 118 (23) : 15 - 24
  • [8] Sulfur-doped g-C3N4/g-C3N4 isotype step-scheme heterojunction for photocatalytic H2 evolution
    Jiang, Jizhou
    Xiong, Zhiguo
    Wang, Haitao
    Liao, Guodong
    Bai, Saishuai
    Zou, Jing
    Wu, Pingxiu
    Zhang, Peng
    Li, Xin
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 118 : 15 - 24
  • [9] Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation
    Wang, Juan
    Wang, Guohong
    Cheng, Bei
    Yu, Jiaguo
    Fan, Jiajie
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (01) : 56 - 68
  • [10] Experimental and theoretical investigation of sulfur-doped g-C3N4 nanosheets/FeCo2O4 nanorods S-scheme heterojunction for photocatalytic H2 evolution
    Wang, Haitao
    Yu, Lianglang
    Peng, Jiahe
    Zou, Jing
    Gong, Weiping
    Jiang, Jizhou
    NANO RESEARCH, 2024, 17 (09) : 8007 - 8016