Exploring the significance of the frontal lobe for diagnosis of schizophrenia using explainable artificial intelligence and group level analysis

被引:0
|
作者
Varaprasad, S. A. [1 ]
Goel, Tripti [1 ]
机构
[1] Natl Inst Technol Silchar, Biomed Imaging Lab, Silchar 788010, Assam, India
关键词
Frontal lobe; Gradient-weighted Class Activation Mapping (Grad-CAM); Structural magnetic resonance imaging; Functional magnetic resonance imaging; Statistical analysis;
D O I
10.1016/j.pscychresns.2025.111969
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Schizophrenia (SZ) is a complex mental disorder characterized by a profound disruption in cognition and emotion, often resulting in a distorted perception of reality. Magnetic resonance imaging (MRI) is an essential tool for diagnosing SZ which helps to understand the organization of the brain. Functional MRI (fMRI) is a specialized imaging technique to measure and map brain activity by detecting changes in blood flow and oxygenation. The proposed paper correlates the results using an explainable deep learning approach to identify the significant regions of SZ patients using group-level analysis for both structural MRI (sMRI) and fMRI data. The study found that the heat maps for Grad-CAM show clear visualization in the frontal lobe for the classification of SZ and CN with a 97.33% accuracy. The group difference analysis reveals that sMRI data shows intense voxel activity in the right superior frontal gyrus of the frontal lobe in SZ patients. Also, the group difference between SZ and CN during n-back tasks of fMRI data indicates significant voxel activation in the frontal cortex of the frontal lobe. These findings suggest that the frontal lobe plays a crucial role in the diagnosis of SZ, aiding clinicians in planning the treatment.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An interpretable schizophrenia diagnosis framework using machine learning and explainable artificial intelligence
    Shivaprasad, Samhita
    Chadaga, Krishnaraj
    Dias, Cifha Crecil
    Sampathila, Niranjana
    Prabhu, Srikanth
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [2] Diagnosis of Acute Poisoning using explainable artificial intelligence
    Chary, Michael
    Boyer, Ed W.
    Burns, Michele M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [3] Exploring transparency: A comparative analysis of explainable artificial intelligence techniques in retinography images to support the diagnosis of glaucoma
    Vieira, Cleverson
    Rocha, Leonardo
    Guimarães, Marcelo
    Dias, Diego
    Computers in Biology and Medicine, 2025, 185
  • [4] AudioMNIST: Exploring Explainable Artificial Intelligence for audio analysis on a simple benchmark
    Becker, Soren
    Vielhaben, Johanna
    Ackermann, Marcel
    Mueller, Klaus-Robert
    Lapuschkin, Sebastian
    Samek, Wojciech
    JOURNAL OF THE FRANKLIN INSTITUTE, 2024, 361 (01) : 418 - 428
  • [5] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Loredana Bellantuono
    Raffaele Tommasi
    Ester Pantaleo
    Martina Verri
    Nicola Amoroso
    Pierfilippo Crucitti
    Michael Di Gioacchino
    Filippo Longo
    Alfonso Monaco
    Anda Mihaela Naciu
    Andrea Palermo
    Chiara Taffon
    Sabina Tangaro
    Anna Crescenzi
    Armida Sodo
    Roberto Bellotti
    Scientific Reports, 13
  • [6] Exploring explainable artificial intelligence techniques for evaluating cervical intraepithelial neoplasia (CIN) diagnosis using colposcopy images
    Hussain, Elima
    Mahanta, Lipi B.
    Borbora, Khurshid A.
    Borah, Himakshi
    Choudhury, Saswati S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [7] An eXplainable Artificial Intelligence analysis of Raman spectra for thyroid cancer diagnosis
    Bellantuono, Loredana
    Tommasi, Raffaele
    Pantaleo, Ester
    Verri, Martina
    Amoroso, Nicola
    Crucitti, Pierfilippo
    Di Gioacchino, Michael
    Longo, Filippo
    Monaco, Alfonso
    Naciu, Anda Mihaela
    Palermo, Andrea
    Taffon, Chiara
    Tangaro, Sabina
    Crescenzi, Anna
    Sodo, Armida
    Bellotti, Roberto
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Detection of prostate cancer and determination of its significance using explainable artificial intelligence.
    Eminaga, Okyaz
    Loening, Andreas
    Lu, Andrew
    Brooks, James D.
    Rubin, Daniel
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [9] An explainable analysis of diabetes mellitus using statistical and artificial intelligence techniques
    Hoyos, William
    Hoyos, Kenia
    Ruiz, Rander
    Aguilar, Jose
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [10] Physiological signal analysis using explainable artificial intelligence: A systematic review
    Shen, Jian
    Wu, Jinwen
    Liang, Huajian
    Zhao, Zeguang
    Li, Kunlin
    Zhu, Kexin
    Wang, Kang
    Ma, Yu
    Hu, Wenbo
    Guo, Chenxu
    Zhang, Yanan
    Hu, Bin
    NEUROCOMPUTING, 2025, 618