Ionic Liquid-Based Hydrogel Electrolytes Enabling High-Voltage-Plateau Zinc-Ion Batteries

被引:0
|
作者
Chen, Yuejin [1 ]
Zhu, Mengyu [1 ]
Li, Chunxin [1 ]
Wang, Huibo [1 ,2 ]
Chen, Danling [1 ]
Wu, He [1 ]
Huang, Zhiqiang [1 ]
Wang, Yating [1 ]
Fan, You [1 ]
Bai, Zhengshuai [1 ]
Chen, Shi [3 ]
Tang, Yuxin [1 ,2 ]
Zhang, Yanyan [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem Engn, Fuzhou 350116, Peoples R China
[2] Qingyuan Innovat Lab, Quanzhou 362801, Peoples R China
[3] Univ Macau, Inst Appl Phys & Mat Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-freezing; high voltage plateau; hydrogel electrolytes; ionic liquids; zinc-ion batteries;
D O I
10.1002/adfm.202501162
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aqueous zinc ion batteries (ZIBs) have been recognized as highly promising energy storage systems due to their high safety, low cost, and environmental benignity. However, low voltage platform of cathode, coupled with uneven Zn deposition, side reactions, and limited operational temperature range caused by free water molecules, has hampered the practical application of ZIBs. To address these issues, 1-ethyl-3-methylimidazolium acetate (EmimAc) ionic liquid (IL) is utilized to modify the active water in polyvinyl alcohol (PVA)-based hydrogel electrolyte. The abundant hydroxyl groups on PVA chains, along with strong interactions between IL and H2O, disrupt hydrogen bonds between water molecules. This hydrogel electrolyte alleviates side reactions, and improves low-temperature performance through suppressing water crystallization and lowering the freezing point of the electrolyte. Furthermore, the strong binding of hydroxyl groups of PVA to Zn2+ restricts Zn2+ migration, ensuring the de-intercalation of Na+ at the Na3V2(PO4)(3) (NVP) cathode, thereby maintaining a high voltage plateau (1.48 V) for improved energy density. Benefitting from these merits, a pouch cell of Zn||NVP achieves 100 cycles at 25 degrees C, and a coin cell achieves 81.3% capacity retention after 1600 cycles at -20 degrees C. This work represents a significant advance in designing expanded work voltage/temperature hydrogel electrolytes for ZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Research Progress on Hydrogel Electrolytes for Flexible Zinc-Ion Batteries
    Zhang, Wei
    Xia, Huan
    Cao, Xin
    Xu, Binyu
    Li, Zhengyun
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2024, 44 (01) : 148 - 158
  • [2] The usage of ionic liquid in aqueous electrolytes to mitigate zinc dendrite formation in zinc-ion batteries
    Poochai, Chatwarin
    Kongthong, Tanaporn
    Lohitkarn, Jaruwit
    Maeboonruan, Nattida
    Pothaya, Sukanya
    Cheacharoen, Rongrong
    Sriprachuabwong, Chakrit
    DIAMOND AND RELATED MATERIALS, 2025, 154
  • [3] Anti-Polyelectrolyte Effect of Zwitterionic Hydrogel Electrolytes Enabling High-Voltage Zinc-Ion Hybrid Capacitors
    Zeng, Juan
    Chen, Hao
    Dong, Liubing
    Guo, Xin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
  • [4] Mass production of robust hydrogel electrolytes for high-performance zinc-ion batteries
    Ma, Linlin
    Liu, Xiaojing
    Fan, Jihao
    Yu, Xiaodong
    Cao, Longsheng
    Zhao, Chuangqi
    MATERIALS HORIZONS, 2025,
  • [5] High-Performance Zwitterionic Hydrogel Polymer Electrolytes for Aqueous Zinc-Ion Batteries: Superior Ionic Conductivity and Stability
    Handayani, Puji Lestari
    Lee, Ye Ji
    Choi, U. Hyeok
    POLYMER-KOREA, 2024, 48 (06) : 639 - 648
  • [6] Ionic Liquid-Based Electrolytes for High Energy, Safer Lithium Batteries
    Appetecchi, G. B.
    Montanino, M.
    Passerini, S.
    IONIC LIQUIDS: SCIENCE AND APPLICATIONS, 2012, 1117 : 67 - +
  • [7] Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc-Ion Batteries and Capacitors
    Ma, Rujiao
    Xu, Zhixiao
    Wang, Xiaolei
    ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (05)
  • [8] Tough Hydrogel Electrolytes for Anti-Freezing Zinc-Ion Batteries
    Yan, Yichen
    Duan, Sidi
    Liu, Bo
    Wu, Shuwang
    Alsaid, Yousif
    Yao, Bowen
    Nandi, Sunny
    Du, Yingjie
    Wang, Ta-Wei
    Li, Yuzhang
    He, Ximin
    ADVANCED MATERIALS, 2023, 35 (18)
  • [9] Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc-Ion Batteries and Capacitors
    Rujiao Ma
    Zhixiao Xu
    Xiaolei Wang
    Energy & Environmental Materials, 2023, 6 (05) : 90 - 115
  • [10] Recent development of ionic liquid-based electrolytes in lithium-ion batteries
    Tang, Xiao
    Lv, Shuyao
    Jiang, Kun
    Zhou, Guohui
    Liu, Xiaomin
    JOURNAL OF POWER SOURCES, 2022, 542