Dynamic Vehicle Model for Accommodating Fatigue Based on Axle Load Effects in Orthotropic Steel Bridge Decks

被引:0
|
作者
Ruan, Xin [1 ,2 ]
Zhang, Yuhao [1 ]
Jin, Zeren [1 ]
Wang, Qidi [1 ]
机构
[1] Tongji Univ, Dept Bridge Engn, Shanghai 200092, Peoples R China
[2] State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Standardized fatigue vehicle model; Axle group spectrum; Influence surface loading;
D O I
10.1061/JBENF2.BEENG-7060
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vehicle-induced fatigue is a primary contributor to the formation of cracks on orthotropic steel bridge decks (OSDs). Currently, simplified fatigue vehicle models are often employed in bridge design specification to estimate fatigue damage. However, these models are constructed based on specific spatial and temporal traffic statistics. This specificity limits the development of a standardized fatigue vehicle model that can be applied in different regions and does not accommodate the varying nature of traffic flow. In addition, the stress characteristics of the OSDs under vehicle loading are not adequately reflected in current models. In this study, an innovative method of fatigue vehicle model generalization is proposed, enabling dynamic adaptation to varying traffic conditions. By analyzing the influence surfaces of four typical segments, traffic loads are subdivided into load spectra for three types of axle groups, with equivalent weights determined by damage contribution. In this way, a comprehensive 1 + 2 + 3-axle fatigue vehicle model with three types of equivalent axle groups is constructed. Using a 2,000-m-class suspension bridge as a case study, the robustness of the model is confirmed by analyzing four sets of simulated traffic flow and influence surfaces. The generalizability of the model is verified, and the consistency of the fatigue models is achieved in different traffic conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Fatigue Reliability Assessment for Orthotropic Steel Bridge Decks Considering Load Sequence Effects
    Xu, Jun-Hong
    Zhou, Guang-Dong
    Zhu, Tai-Yong
    FRONTIERS IN MATERIALS, 2021, 8
  • [2] LEFM based fatigue design for welded connections in orthotropic steel bridge decks
    Nagy, Wim
    van Bogaert, Philippe
    de Backer, Hans
    FATIGUE DESIGN 2015, INTERNATIONAL CONFERENCE PROCEEDINGS, 6TH EDITION, 2015, 133 : 758 - 769
  • [3] Fatigue assessment of orthotropic steel bridge decks based on strain monitoring data
    Di, Jin
    Ruan, Xiaozheng
    Zhou, Xuhong
    Wang, Jie
    Peng, Xi
    ENGINEERING STRUCTURES, 2021, 228
  • [4] Fatigue Damage Evaluation and Retrofit of Steel Orthotropic Bridge Decks
    Wang, Chungsheng
    Feng, Yacheng
    Duan, Lan
    DAMAGE ASSESSMENT OF STRUCTURES VIII, 2009, 413-414 : 741 - 748
  • [5] Evaluation of dynamic vehicle load on bridge decks
    Lin, JH
    Weng, CC
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2004, 27 (05) : 695 - 705
  • [6] Fatigue strength of welded joints in orthotropic steel bridge decks
    Kolstein, MH
    Wardenier, J
    Cuninghame, JR
    Beales, C
    Bruls, A
    Poleur, E
    Caramelli, S
    Croce, P
    Carracilli, J
    Jacob, B
    Leendertz, JS
    Bignonnet, A
    Lehrke, HP
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON WELDED STRUCTURES IN PARTICULAR WELDED BRIDGES, 1996, : 179 - 198
  • [7] Fatigue classification of welded details in orthotropic steel bridge decks
    Kolstein, MH
    Cuninghame, JR
    Bruls, A
    INTERNATIONAL CONFERENCE ON FATIGUE OF WELDED COMPONENTS AND STRUCTURES, 1996, : 15 - 23
  • [8] Fatigue strength of welded joints in orthotropic steel bridge decks
    Kolstein, M.H.
    Wardenier, J.
    Cuninghame, J.R.
    Beales, C.
    Bruls, A.
    Poleur, E.
    Caramelli, S.
    Croce, P.
    Carracilli, J.
    Jacob, B.
    Leendertz, J.S.
    Bignonnet, A.
    Lehrke, H.P.
    Welding in the World, Le Soudage Dans Le Monde, 1996, 38 : 175 - 194
  • [9] Fatigue performance of floorbeam cutout on orthotropic steel bridge decks
    Zhu, Zhi-Wen
    Xiang, Ze
    Li, Jian-Peng
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2018, 18 (02): : 11 - 22
  • [10] Fatigue behaviour of orthotropic steel bridge decks with inner bulkheads
    Zhu, Aizhu
    Li, Mu
    Zhu, Hongping
    Xu, Gongyi
    Xiao, Haizhu
    Ge, Hanbin
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2018, 146 : 63 - 75