Fabrication of Functional 3D Nanoarchitectures via Atomic Layer Deposition on DNA Origami Crystals

被引:0
|
作者
Ermatov, Arthur [1 ,2 ]
Kost, Melisande [3 ,4 ]
Yin, Xin [1 ,2 ]
Butler, Paul [5 ,6 ]
Dass, Mihir [1 ,2 ]
Sharp, Ian D. [5 ,6 ]
Liedl, Tim [1 ,2 ]
Bein, Thomas [3 ,4 ]
Posnjak, Gregor [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Fac Phys, D-80539 Munich, Germany
[2] Ludwig Maximilians Univ Munchen, CeNS, D-80539 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Dept Chem, D-81377 Munich, Germany
[4] Ludwig Maximilians Univ Munchen, CeNS, D-81377 Munich, Germany
[5] Tech Univ Munich, Walter Schottky Inst, D-85748 Munich, Germany
[6] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Munich, Germany
关键词
NANOSTRUCTURES; SOLUBILITY; SHAPES; WATER;
D O I
10.1021/jacs.4c17232
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
While DNA origami is a powerful bottom-up fabrication technique, the physical and chemical stability of DNA nanostructures is generally limited to aqueous buffer conditions. Wet chemical silicification can stabilize these structures but does not add further functionality. Here, we demonstrate a versatile three-dimensional (3D) nanofabrication technique to conformally coat micrometer-sized DNA origami crystals with functional metal oxides via atomic layer deposition (ALD). In addition to depositing homogeneous and conformal nanometer-thin ZnO, TiO2, and IrO2 (multi)layers inside SiO2-stabilized crystals, we establish a method to directly coat bare DNA crystals with ALD layers while maintaining the crystal integrity, enabled by critical point drying and low ALD process temperatures. As a proof-of-concept application, we demonstrate electrocatalytic water oxidation using ALD IrO2-coated DNA origami crystals, resulting in improved performance relative to that of planar films. Overall, our coating strategy establishes a tool set for designing custom-made 3D nanomaterials with precisely defined topologies and material compositions, combining the unique advantages of DNA origami and atomically controlled deposition of functional inorganic materials.
引用
收藏
页码:9519 / 9527
页数:9
相关论文
共 50 条
  • [1] 3D DNA Origami Crystals
    Zhang, Tao
    Hartl, Caroline
    Frank, Kilian
    Heuer-Jungemann, Amelie
    Fischer, Stefan
    Nickels, Philipp C.
    Nickel, Bert
    Liedl, Tim
    ADVANCED MATERIALS, 2018, 30 (28)
  • [2] Surface modification and fabrication of 3D nanostructures by atomic layer deposition
    Changdeuck Bae
    Hyunjung Shin
    Kornelius Nielsch
    MRS Bulletin, 2011, 36 : 887 - 897
  • [3] Surface modification and fabrication of 3D nanostructures by atomic layer deposition
    Bae, Changdeuck
    Shin, Hyunjung
    Nielsch, Kornelius
    MRS BULLETIN, 2011, 36 (11) : 887 - 897
  • [4] Atomic layer deposition in porous structures: 3D photonic crystals
    King, JS
    Heineman, D
    Graugnard, E
    Summers, CJ
    APPLIED SURFACE SCIENCE, 2005, 244 (1-4) : 511 - 516
  • [5] Complex, 3D photonic crystals fabricated by atomic layer deposition
    King, JS
    Gaillot, D
    Yamashita, T
    Neff, C
    Graugnard, E
    Summers, CJ
    Organic and Nanocomposite Optical Materials, 2005, 846 : 315 - 320
  • [6] 3D DNA origami templated nanoscale device fabrication
    Lee, Kenneth
    Jensen, John
    Uprety, Bibek
    Davis, Robert
    Harb, John
    Woolley, Adam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [7] DNA origami-designed 3D phononic crystals
    Park, Sung Hun
    Park, Haedong
    Nam, Jwa-Min
    Ke, Yonggang
    Liedl, Tim
    Tian, Ye
    Lee, Seungwoo
    NANOPHOTONICS, 2023, 12 (13) : 2611 - 2621
  • [8] DNA origami in 3D
    Allison Doerr
    Nature Methods, 2011, 8 : 454 - 454
  • [9] DNA origami in 3D
    Doerr, Allison
    NATURE METHODS, 2011, 8 (06) : 454 - 454
  • [10] DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging
    Kolbeck, Pauline J.
    Dass, Mihir
    V. Martynenko, Irina
    Dijk-Moes, Relinde J. A. van
    Brouwer, Kelly J. H.
    van Blaaderen, Alfons
    Vanderlinden, Willem
    Liedl, Tim
    Lipfert, Jan
    NANO LETTERS, 2023, 23 (04) : 1236 - 1243