Analyzing communication policies in cooperative multi-agent reinforcement learning for traffic signal control: A simulation-based study

被引:0
|
作者
Abidi, Sofiene [1 ]
Mathieu, Philippe [1 ]
Nongaillard, Antoine [1 ]
机构
[1] Univ Lille, Ctr Rech Informat Signal & Automat Lille, Cent Lille, CNRS,UMR 9189,CRIStAL, Batiment Esprit, F-59655 Villeneuve Dascq, France
关键词
Deep reinforcement learning; Multi-agent; Smart transportation; Traffic signal control;
D O I
10.1016/j.simpat.2025.103100
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Traffic signal control (TSC) poses a significant challenge in intelligent transportation systems and has been addressed using multi-agent reinforcement learning (MARL). While centralized approaches are often impractical for large-scale TSC problems, decentralized approaches offer scalability but introduce new challenges, such as partial observability. Communication plays a crucial role in decentralized MARL, as agents must exchange information through messages to understand the system better and achieve effective coordination. Deep MARL has been applied, where multiple interacting agents share a common environment. However, many proposed deep MARL communication policies for TSC allow agents to communicate with all other agents and share global state. This can contribute to system noise and degrade overall performance since real-time global information sharing is impractical due to communication latency. This paper employs simulation-based approaches to assess the effectiveness of diverse information-sharing strategies to enhance overall system performance based on Cooperative Deep Q-Network (CoDQN). Simulation experiment results suggest that the lack of a suitable sharing policy to provide a representative observation of the real state appears to affect performance more drastically than changes to the underlying traffic patterns.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Cooperative Traffic Signal Control Based on Multi-agent Reinforcement Learning
    Gao, Ruowen
    Liu, Zhihan
    Li, Jinglin
    Yuan, Quan
    BLOCKCHAIN AND TRUSTWORTHY SYSTEMS, BLOCKSYS 2019, 2020, 1156 : 787 - 793
  • [2] Multi-Agent Reinforcement Learning for Traffic Signal Control: A Cooperative Approach
    Kolat, Mate
    Kovari, Balint
    Becsi, Tamas
    Aradi, Szilard
    SUSTAINABILITY, 2023, 15 (04)
  • [3] Swarm Reinforcement Learning for traffic signal control based on cooperative multi-agent framework
    Tahifa, Mohammed
    Boumhidi, Jaouad
    Yahyaouy, Ali
    2015 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2015,
  • [4] Multiple intersections traffic signal control based on cooperative multi-agent reinforcement learning
    Liu, Junxiu
    Qin, Sheng
    Su, Min
    Luo, Yuling
    Wang, Yanhu
    Yang, Su
    INFORMATION SCIENCES, 2023, 647
  • [5] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [6] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Zhimin Qiao
    Liangjun Ke
    Xiaoqiang Wang
    Applied Intelligence, 2023, 53 : 4483 - 4498
  • [7] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Qiao, Zhimin
    Ke, Liangjun
    Wang, Xiaoqiang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4483 - 4498
  • [8] Multi-agent Reinforcement Learning for Traffic Signal Control
    Prabuchandran, K. J.
    Kumar, Hemanth A. N.
    Bhatnagar, Shalabh
    2014 IEEE 17TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2014, : 2529 - 2534
  • [9] Microscopic Traffic Simulation by Cooperative Multi-agent Deep Reinforcement Learning
    Bacchiani, Giulio
    Molinari, Daniele
    Patander, Marco
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1547 - 1555
  • [10] Multi-Agent Reinforcement Learning Based on Representational Communication for Large-Scale Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    Amato, Christopher
    IEEE ACCESS, 2023, 11 : 47646 - 47658