Tunable Work Function and Surface Energy in Titanium Nitride (TiN) Thin Films through Quantum Well States

被引:0
|
作者
Huang, Angus [1 ,2 ,3 ]
Teh, Yee-Heng [1 ]
Chen, Chin-Hsuan [1 ]
Hung, Sheng-Hsiung [1 ]
Wang, Jer-Fu [4 ]
Chuu, Chih-Piao [4 ]
Jeng, Horng-Tay [1 ,2 ,5 ,6 ,7 ]
机构
[1] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[2] Natl Ctr Theoret Sci, Phys Div, Taipei 10617, Taiwan
[3] Natl Tsing Hua Univ, Ctr Theory & Computat, Hsinchu 30013, Taiwan
[4] Taiwan Semicond Mfg Co Ltd, Corp Res, Hsinchu 30091, Taiwan
[5] Natl Tsing Hua Univ, Coll Semicond Res, Hsinchu 30013, Taiwan
[6] Acad Sinica, Inst Biol Chem, Taipei 11529, Taiwan
[7] Chung Yuan Christian Univ, Res Ctr Semicond Mat & Adv Opt, Taoyuan 332031, Taiwan
来源
ACS MATERIALS AU | 2025年 / 5卷 / 02期
关键词
semiconductor; TiN; workfunction; first-principles; quantum well state; GATE; SUPERCONDUCTIVITY; PERFORMANCE; PSEUDOPOTENTIALS; ELECTRODE; DYNAMICS; TIN(001); SCHEMES; BULK; AL;
D O I
10.1021/acsmaterialsau.4c00176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High work function metals are crucial in various semiconductor applications. Titanium nitride (TiN) is particularly noteworthy as a high work function material in metal gate structures, which significantly enhances the transistor performance and reliability in advanced semiconductor devices. In this study, we employ first-principles calculations to demonstrate that the TiN work function oscillates with thickness due to the quantum well state effect. Furthermore, we investigate the termination and surface dependence of the work function across different crystallographic orientations. We show that the work function can be enhanced to up to 8.04 eV for TiN(111) with N-termination at five monolayers (5 MLs). Our findings provide valuable insights for fine-tuning the high work function of TiN.
引用
收藏
页码:430 / 437
页数:8
相关论文
共 50 条
  • [1] Tunable Surface Plasmon Resonances in Sputtered Titanium Nitride Thin Films
    Shankernath, V.
    Naidu, K. Lakshun
    Krishna, M. Ghanashyam
    Padmanabhan, K. A.
    DAE SOLID STATE PHYSICS SYMPOSIUM 2015, 2016, 1731
  • [2] Low-energy plasmons in quantum-well and surface states of metallic thin films
    Silkin, V. M.
    Nagao, T.
    Despoja, V.
    Echeverry, J. P.
    Eremeev, S. V.
    Chulkov, E. V.
    Echenique, P. M.
    PHYSICAL REVIEW B, 2011, 84 (16):
  • [3] Excitation of Surface Plasmon Polaritons on Titanium Nitride Thin Films through Energy Transfer from Dye Molecules
    Murai, Shunsuke
    Daido, Yohei
    Kamakura, Ryosuke
    Fujita, Koji
    Tanaka, Katsuhisa
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 59 - 62
  • [4] Retrieving the energy band of Cu thin films using quantum well states
    Wu, J.
    Choi, J.
    Krupin, O.
    Rotenberg, E.
    Wu, Y. Z.
    Qiu, Z. Q.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (03)
  • [5] Quantum-well states in copper thin films
    Kawakami, RK
    Rotenberg, E
    Choi, HJ
    Escorcia-Aparicio, EJ
    Bowen, MO
    Wolfe, JH
    Arenholz, E
    Zhang, ZD
    Smith, NV
    Qiu, ZQ
    NATURE, 1999, 398 (6723) : 132 - 134
  • [6] Photoemission studies of quantum well states in thin films
    Chiang, TC
    SURFACE SCIENCE REPORTS, 2000, 39 (7-8) : 181 - 235
  • [7] Quantum-well states in copper thin films
    R. K. Kawakami
    E. Rotenberg
    Hyuk J. Choi
    Ernesto J. Escorcia-Aparicio
    M. O. Bowen
    J. H. Wolfe
    E. Arenholz
    Z. D. Zhang
    N. V. Smith
    Z. Q. Qiu
    Nature, 1999, 398 : 132 - 134
  • [8] Quantum-well states in copper thin films
    Department of Physics, University of California at Berkeley, Berkeley, CA 94720, United States
    不详
    不详
    Nature, 6723 (132-134):
  • [9] Quantum-well and modified image-potential states in thin Pb(111) films: an estimate for the local work function
    Aladyshkin, A. Yu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (43)
  • [10] Band modification of tin nitride thin films for green energy generation
    Sabeer, N. A. Muhammed
    Paulson, Anju
    Pradyumnan, P. P.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 138