Penalized quadratic inference functions estimation of fixed effects partially linear varying coefficient spatial error model
被引:0
|
作者:
Chen, Jianbao
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Peoples R ChinaFujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
Chen, Jianbao
[1
,2
]
Li, Fen
论文数: 0引用数: 0
h-index: 0
机构:
Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Peoples R China
Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R ChinaFujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
Li, Fen
[1
,2
,3
]
机构:
[1] Fujian Normal Univ, Sch Math & Stat, Fuzhou 350117, Peoples R China
[2] Fujian Normal Univ, Fujian Prov Key Lab Stat & Artificial Intelligence, Fuzhou 350117, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R China
Partially linear varying coefficient spatial error;
model;
Penalized quadratic inference functions;
estimation;
Correlation within individuals;
Asymptotic property;
Monte Carlo simulation;
SEMIPARAMETRIC GMM ESTIMATION;
CO2;
EMISSIONS;
REGRESSION;
D O I:
10.1016/j.econmod.2025.107022
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
This study introduces a novel fixed effects partially linear varying coefficient spatial error model featuring a correlation structure within individuals. A penalized quadratic inference functions estimation method for unknowns is proposed by employing B-spline to approximate the varying coefficient functions. Under certain regular conditions, the consistency and asymptotic normality of parametric estimators and the optimal convergence rate of nonparametric estimators are derived. Monte Carlo simulation indicates that the estimates perform strongly infinite sample scenarios. Empirical data analysis demonstrates that the model effectively captures the spatial error correlation of CO2 emissions and diverse factors' linear and nonlinear influences on CO2 emissions. The proposed model and estimation method can be useful for researchers in related disciplines.
机构:
Department of Mathematics,Shanxi Datong UniversityDepartment of Mathematics,Shanxi Datong University
Jingyan FENG
Riquan ZHANG
论文数: 0引用数: 0
h-index: 0
机构:
Department of Statistics,East China Normal University
Department of Mathematics,Shanxi Datong UniversityDepartment of Mathematics,Shanxi Datong University
机构:
Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R ChinaE China Normal Univ, Dept Stat, Shanghai 200241, Peoples R China
Feng, Jingyan
Zhang, Riquan
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Stat, Shanghai 200241, Peoples R China
Shanxi Datong Univ, Dept Math, Datong 037009, Peoples R ChinaE China Normal Univ, Dept Stat, Shanghai 200241, Peoples R China