A ridge estimation method for the Waring regression model: simulation and application

被引:0
|
作者
Noor, Azka [1 ]
Amin, Muhammad [1 ]
Amanullah, Muhammad [2 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha 40162, Pakistan
[2] Bahauddin Zakariya Univ Multan, Dept Stat, Multan, Pakistan
关键词
Maximum likelihood estimator; Multicollinearity; Ridge parameter; Ridge regression; Waring regression model; COUNT DATA; POISSON REGRESSION; PERFORMANCE; PARAMETER;
D O I
10.1080/03610918.2024.2406400
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This study focuses on parameter estimation in the presence of multicollinearity for the count response that follows the Waring distribution. The Waring regression model deals with over-dispersion. So, this study proposed the Waring ridge regression (WRR) model as a solution for multicollinearity with over-dispersion. We conducted a theoretical comparison between the ridge estimator and the maximum likelihood estimators using matrix and scalar mean squared error as a performance evaluation criterion. Several ridge parameters are considered for the WRR estimator. The performance of these parameters is numerically evaluated using a Monte Carlo simulation study and a real application. The results of the simulation and application demonstrate the superiority of the WRR model with different ridge parameters over the maximum likelihood estimator.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the estimation of ridge penalty in linear regression: Simulation and application
    Khan, Muhammad Shakir
    Ali, Amjad
    Suhail, Muhammad
    Alotaibi, Eid Sadun
    Alsubaie, Nahaa Eid
    KUWAIT JOURNAL OF SCIENCE, 2024, 51 (04)
  • [2] On some beta ridge regression estimators: method, simulation and application
    Qasim, Muhammad
    Mansson, Kristofer
    Golam Kibria, B. M.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (09) : 1699 - 1712
  • [3] Developing ridge estimators for the extended Poisson-Tweedie regression model: Method, simulation, and application
    Abonazel, Mohamed R.
    Alzahrani, Ali Rashash R.
    Saber, Ashrakat Adel
    Dawoud, Issam
    Tageldin, Elsayed
    Azazy, Abeer R.
    SCIENTIFIC AFRICAN, 2024, 23
  • [4] Ridge estimation of a semiparametric regression model
    Hu, HC
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) : 215 - 222
  • [5] Modified ridge-type for the Poisson regression model: simulation and application
    Lukman, Adewale F.
    Aladeitan, Benedicta
    Ayinde, Kayode
    Abonazel, Mohamed R.
    JOURNAL OF APPLIED STATISTICS, 2022, 49 (08) : 2124 - 2136
  • [6] On the performance of link functions in the beta ridge regression model: Simulation and application
    Mustafa, Sidra
    Amin, Muhammad
    Akram, Muhammad Nauman
    Afzal, Nimra
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (18):
  • [7] A Robust Estimation Method for Nonlinear Model Coefficients Using Ridge Regression
    Xu, Qiang
    Zhang, Wei
    Wang, Guizhen
    Xia, Xiangjie
    Liu, Ying
    Tang, Youxi
    2020 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2020), 2020,
  • [8] Beta ridge regression estimators: simulation and application
    Abonazel, Mohamed R.
    Taha, Ibrahim M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) : 4280 - 4292
  • [9] Developing ridge estimation method for median regression
    Zeebari, Zangin
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (12) : 2627 - 2638