Pair-EGRET: enhancing the prediction of protein-protein interaction sites through graph attention networks and protein language models

被引:1
|
作者
Alam, Ramisa [1 ]
Mahbub, Sazan [1 ,2 ]
Bayzid, Md Shamsuzzoha [1 ]
机构
[1] Bangladesh Univ Engn & Technol, Dept Comp Sci & Engn, ECE Bldg, West Palashi, Dhaka 1205, Bangladesh
[2] Carnegie Mellon Univ, Sch Comp Sci, Computat Biol Dept, Pittsburgh, PA 15213 USA
关键词
FINGERPRINTS; SEQUENCE; SERVER;
D O I
10.1093/bioinformatics/btae588
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation Proteins are responsible for most biological functions, many of which require the interaction of more than one protein molecule. However, accurately predicting protein-protein interaction (PPI) sites (the interfacial residues of a protein that interact with other protein molecules) remains a challenge. The growing demand and cost associated with the reliable identification of PPI sites using conventional experimental methods call for computational tools for automated prediction and understanding of PPIs.Results We present Pair-EGRET, an edge-aggregated graph attention network that leverages the features extracted from pretrained transformer-like models to accurately predict PPI sites. Pair-EGRET works on a k-nearest neighbor graph, representing the 3D structure of a protein, and utilizes the cross-attention mechanism for accurate identification of interfacial residues of a pair of proteins. Through an extensive evaluation study using a diverse array of experimental data, evaluation metrics, and case studies on representative protein sequences, we demonstrate that Pair-EGRET can achieve remarkable performance in predicting PPI sites. Moreover, Pair-EGRET can provide interpretable insights from the learned cross-attention matrix.Availability and implementation Pair-EGRET is freely available in open source form at the GitHub Repository https://github.com/1705004/Pair-EGRET.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] SpatialPPIv2: Enhancing protein-protein interaction prediction through graph neural networks with protein language models
    Hu, Wenxing
    Ohue, Masahito
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2025, 27 : 508 - 518
  • [2] EGRET: edge aggregated graph attention networks and transfer learning improve protein-protein interaction site prediction
    Mahbub, Sazan
    Bayzid, Md Shamsuzzoha
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [3] Prediction of protein-protein interaction using graph neural networks
    Jha, Kanchan
    Saha, Sriparna
    Singh, Hiteshi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Prediction of protein-protein interaction sites in heterocomplexes with neural networks
    Fariselli, P
    Pazos, F
    Valencia, A
    Casadio, R
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (05): : 1356 - 1361
  • [5] Graph kernels for disease outcome prediction from protein-protein interaction networks
    Borgwardt, Karsten M.
    Kriegel, Hans-Peter
    Vishwanathan, S. V. N.
    Schraudolph, Nicol N.
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2007, 2007, : 4 - +
  • [6] MGPPI: multiscale graph neural networks for explainable protein-protein interaction prediction
    Zhao, Shiwei
    Cui, Zhenyu
    Zhang, Gonglei
    Gong, Yanlong
    Su, Lingtao
    FRONTIERS IN GENETICS, 2024, 15
  • [7] Prediction of Protein-Protein Interaction Sites Using Back Propagation Neural Networks
    Wang, Feilu
    Song, Yang
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 1057 - 1061
  • [8] Computation of Graph Spectra of Protein-Protein Interaction Networks
    Karasozen, Bulent
    Erdem, Oezge
    PROCEEDINGS OF THE 6TH INTERNATIONAL SYMPOSIUM ON HEALTH INFORMATICS AND BIOINFORMATICS (HIBIT'11), 2011, : 74 - 79
  • [9] A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
    Nasiri, Elahe
    Berahmand, Kamal
    Rostami, Mehrdad
    Dabiri, Mohammad
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [10] A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding
    Nasiri, Elahe
    Berahmand, Kamal
    Rostami, Mehrdad
    Dabiri, Mohammad
    Computers in Biology and Medicine, 2021, 137