Subsemigroup of Tn assigned to a fixed point free permutation

被引:0
|
作者
Wojcik, Klaudiusz [1 ]
机构
[1] Jagiellonian Univ, Dept Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Finite full transformation semigroup; Idempotents; Dold sequences; IDEMPOTENTS; PRODUCTS; SEMIGROUPS; FERMAT; INDEX;
D O I
10.1007/s00233-024-10482-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assume that Tn is the full transformation semigroup of X = {1,..., n} and Sn. Tn is the symmetric group. For s. Sn and i. X we define fi, s. Tn by fi, s (i) = s(i), and fi, s ( j) = j for j = i. Let S be the subsemigroup of Tn generated by idempotents f1, s,..., fn, s . Let a. S. We study the sequence (card F(ak))k.N, where F(ak) is the set of fixed points of ak. We will focus on the case s = (1 2... n). Our motivation comes from a geometric method for detecting chaotic dynamics based on the Wa.zewski retract principle.
引用
收藏
页码:734 / 752
页数:19
相关论文
共 50 条