A DUAL APPROACH TO PARAMETER ESTIMATION Classical vs. Bayesian Methods in Power Rayleigh Modelling

被引:0
|
作者
Mudasir, Sofi [1 ]
Bhat, Ajaz A. [2 ]
Ahmad, Sheikh P. [1 ]
Rehman, Aasimeh [3 ]
Jawa, Taghreed M. [4 ]
Sayed-ahmed, Neveen [4 ]
Tolba, Ahlam H. [5 ]
机构
[1] Univ Kashmir, Dept Stat, Srinagar, India
[2] Islamic Univ Sci & Technol, Dept Math Sci, Awantipora, India
[3] Univ Kashmir, Dept Psychol, Srinagar, India
[4] Taif Univ, Coll Sci, Dept Math & Stat, Taif, Saudi Arabia
[5] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
来源
THERMAL SCIENCE | 2024年 / 28卷 / 6B期
关键词
power Rayleigh distribution; Cramer Von-Mises estimation; Anderson-Darling estimation; weighted least square estimation; PREDICTION;
D O I
10.2298/TSCI2406877M
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article, we investigated the problem of estimating the parameters of power Rayleigh distribution using a range of classical and Bayesian estimate strategies. For applied statisticians and reliability engineers, parameter estimation provides a guide for choosing the best method of estimating the model parameters. Six frequentist estimation methods, including maximum likelihood estimation, Cramer-von Mises estimation, Anderson-Darling estimation, least square estimation, weighted least square estimation, and maximum product of spacing estimation, were taken into consideration when estimating the parameters of the power Rayleigh model. The expressions for Bayes estimators of the scale parameter are derived under squared error and precautionary loss functions and utilizing extensions ofJeffreys' prior and natural conjugate priors. To investigate the finite sample properties of the parameter estimations, Monte Carlo simulations are also performed. Finally, two applications to real data are used to highlight the versatility of the suggested model and the comparison is made with the Rayleigh and some of its well-known extensions such as exponentiated Rayleigh and weighted Rayleigh distributions.
引用
收藏
页码:4877 / 4894
页数:18
相关论文
共 50 条
  • [1] Parameter estimation of inverse exponential Rayleigh distribution based on classical methods
    Mohammed, Mayssa J.
    Mohammed, Ali T.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (01): : 935 - 944
  • [2] Classical and Bayesian Approach in Estimation of Scale Parameter of Nakagami Distribution
    Ahmad, Kaisar
    Ahmad, S. P.
    Ahmed, A.
    JOURNAL OF PROBABILITY AND STATISTICS, 2016, 2016 : 1 - 8
  • [3] The odd lindley power rayleigh distribution: properties, classical and bayesian estimation with applications
    Bhat, A. . A. .
    Ahmad, Sheikh P.
    Almetwally, Ehab M.
    Yehia, Nagla
    Alsadat, Najwan
    Tolba, Ahlam H.
    SCIENTIFIC AFRICAN, 2023, 20
  • [4] Continuous Bayesian networks vs. other methods for regression in environmental modelling
    Maldonado, A. D.
    Ropero, R. F.
    Aguilera, P. A.
    Fernandez, A.
    Rumi, R.
    Salmeron, A.
    SPATIAL STATISTICS CONFERENCE 2015, PART 1, 2015, 26 : 70 - 73
  • [5] A STUDY ON COMPARISONS OF BAYESIAN AND CLASSICAL PARAMETER ESTIMATION METHODS FOR THE TWO-PARAMETER WEIBULL DISTRIBUTION
    Yilmaz, Asuman
    Kara, Mahmut
    Aydogdu, Halil
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 576 - 602
  • [6] A Bayesian Approach for Parameter Estimation With Uncertainty for Dynamic Power Systems
    Petra, Noemi
    Petra, Cosmin G.
    Zhang, Zheng
    Constantinescu, Emil M.
    Anitescu, Mihai
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (04) : 2735 - 2743
  • [7] Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods
    Makowski, D
    Wallach, D
    Tremblay, M
    AGRONOMIE, 2002, 22 (02): : 191 - 203
  • [8] Classical vs. Bayesian methods for linear system identification: point estimators and confidence sets
    Prando, G.
    Romeres, D.
    Pillonetto, G.
    Chiuso, A.
    2016 EUROPEAN CONTROL CONFERENCE (ECC), 2016, : 1365 - 1370
  • [9] Bayesian Estimation of the Parameter and Reliability Function of an Inverse Rayleigh Distribution
    Dey, Sanku
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 (01): : 113 - 124
  • [10] Classical mycology methods vs. non-culture methods: the old vs. the new
    Petrou, M.
    Borman, A.
    MYCOSES, 2009, 52 : 16 - 17