Ruddlesden-Popper and perovskite phases as a material platform for altermagnetism

被引:0
|
作者
Bernardini, Fabio [1 ]
Fiebig, Manfred [2 ]
Cano, Andres [3 ]
机构
[1] Univ Cagliari, Dipartimento Fis, IT-09042 Monserrato, Italy
[2] Swiss Fed Inst Technol, Dept Mat, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland
[3] Univ Grenoble Alpes, Inst Neel, CNRS, Grenoble INP, 25 Rue Martyrs, F-38042 Grenoble, France
关键词
NEUTRON-DIFFRACTION; CRYSTAL;
D O I
10.1063/5.0252836
中图分类号
O59 [应用物理学];
学科分类号
摘要
The subclass collinear antiferromagnets that break spin Kramers degeneracy-thereby exhibiting ferromagnet-like properties-offer exciting opportunities in magnetism, which motivates the expansion of the material base for these so-called altermagnets. Here, we demonstrate that Ruddlesden-Popper and perovskite phases offer a rich material platform for altermagnetic behavior. Using first-principles calculations, we demonstrate altermagnetism in prototypical nickel-based compounds such as La(2)NiO(4 )and identify additional candidates, including the superconducting La3Ni3O7 and the multiferroic BiFeO3. These materials span insulating, semiconducting, and metallic conduction types, with computed nonrelativistic spin splittings reaching up to 250 meV. Our analysis further reveals the presence of accidental nodes and distinct spin-momentum texture topologies at the Brillouin-zone boundary, suggesting a refined classification beyond the initial d-wave and higher even-parity wave classes. Additionally, we address formal inconsistencies in the traditional classification of magnetically ordered systems, proposing resolutions within the altermagnetic framework. Finally, we highlight the potential for altermagnetic behavior of ferrimagnets and weak ferromagnets, broadening the scope for future exploration.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ruddlesden-Popper versus perovskite phases in La-Ca manganites
    Cruz, MM
    Carvalho, MD
    Casaca, A
    Bonfait, G
    Costa, FM
    Godinho, M
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2001, 226 (PART I) : 800 - 802
  • [2] Ruddlesden-Popper Perovskite Solar Cells
    Koh, Teck Ming
    Febriansyah, Benny
    Mathews, Nripan
    CHEM, 2017, 2 (03): : 326 - 327
  • [3] Oxygen isotope effect in the Ruddlesden-Popper phases
    Taldenkov A.N.
    Babushkina N.A.
    Inyushkin A.V.
    Suryanarayanan R.
    Bulletin of the Russian Academy of Sciences: Physics, 2009, 73 (01) : 115 - 118
  • [4] Band gap evolution in Ruddlesden-Popper phases
    Li, LWei
    Niu, Shanyuan
    Zhao, Boyang
    Haiges, Ralf
    Zhang, Zhiqiang
    Ravichandran, Jayakanth
    Janotti, Anderson
    PHYSICAL REVIEW MATERIALS, 2019, 3 (10):
  • [5] Ruddlesden-Popper Perovskite for Stable Solar Cells
    Liang, Chao
    Zhao, Dandan
    Li, Yan
    Li, Xiaojun
    Peng, Shaomin
    Shao, Guosheng
    Xing, Guichuan
    ENERGY & ENVIRONMENTAL MATERIALS, 2018, 1 (04) : 221 - 231
  • [6] Azetidinium Lead Halide Ruddlesden-Popper Phases
    Tian, Jiyu
    Zysman-Colman, Eli
    Morrison, Finlay D.
    MOLECULES, 2021, 26 (21):
  • [7] Perovskite-like crystals of the Ruddlesden-Popper series
    B. V. Beznosikov
    K. S. Aleksandrov
    Crystallography Reports, 2000, 45 : 792 - 798
  • [8] Perovskite-like crystals of the Ruddlesden-Popper series
    Beznosikov, BV
    Aleksandrov, KS
    CRYSTALLOGRAPHY REPORTS, 2000, 45 (05) : 792 - 798
  • [9] Ultrathin Ruddlesden-Popper Perovskite Heterojunction for Sensitive Photodetection
    Fu, Qundong
    Wong, Xiaolei
    Liu, Fucai
    Dong, Yuxin
    Liu, Zirui
    Zheng, Shoujun
    Chaturvedi, Apoorva
    Zhou, Jiadong
    Hu, Peng
    Zhu, Zhuging
    Bo, Fang
    Long, Yi
    Liu, Zheng
    SMALL, 2019, 15 (39)
  • [10] Systematic Thermodynamics of Layered Perovskites: Ruddlesden-Popper Phases
    Glasser, Leslie
    INORGANIC CHEMISTRY, 2017, 56 (15) : 8920 - 8925