A Review on Biohydrogen Production Through Dark Fermentation, Process Parameters and Simulation

被引:0
|
作者
Mokhtarani, Babak [1 ]
Zanganeh, Jafar [1 ]
Moghtaderi, Behdad [1 ]
机构
[1] Univ Newcastle, Ctr Innovat Energy Technol, Callaghan, NSW 2308, Australia
关键词
dark fermentation; hydrogen production; ASPEN Plus simulation; biomass; straw; glucose; BIOLOGICAL HYDROGEN-PRODUCTION; GRANULAR SLUDGE BED; BIO-HYDROGEN; FOOD WASTE; PRETREATMENT METHODS; ANAEROBIC-DIGESTION; SEWAGE-SLUDGE; GLUCOSE; BIOMASS; PH;
D O I
10.3390/en18051092
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study explores biohydrogen production through dark fermentation, an alternative supporting sustainable hydrogen generation. Dark fermentation uses organic waste under anaerobic conditions to produce hydrogen in the absence of light. Key process parameters affecting hydrogen yield, including substrate type, microorganism selection, and fermentation conditions, were examined. Various substrates, such as organic wastes and carbohydrates, were tested, and the role of anaerobic and facultative anaerobic microorganisms in optimizing the process was analyzed. The research also focused on factors such as pH, temperature, and hydraulic retention time to enhance yields and scalability. Additionally, the study modelled the process using ASPEN Plus software 14. This simulation identifies the bottle necks of this process. Due to the lack of available data, modelling and simulation of the described processes in ASPEN Plus required certain approximations. The simulation provides insight into the key challenges that need to be addressed for hydrogen production. Future research should indeed explore current limitations, such as substrate efficiency, process scalability, and cost-effectiveness, as well as potential advancements like the genetic engineering of microbial strains and improved bioreactor designs.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Biohydrogen Production Through Dark Fermentation
    Sarangi, Prakash K.
    Nanda, Sonil
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (04) : 601 - 612
  • [2] Biohydrogen production by dark fermentation
    Khanna, Namita
    Das, Debabrata
    WILEY INTERDISCIPLINARY REVIEWS-ENERGY AND ENVIRONMENT, 2013, 2 (04) : 401 - 421
  • [3] Microbial electrolysis cells for the production of biohydrogen in dark fermentation - A review
    Lee, Hyung-Sool
    Xin, Wang
    Katakojwala, Ranaprathap
    Mohan, S. Venkata
    Tabish, Noori M. D.
    BIORESOURCE TECHNOLOGY, 2022, 363
  • [4] The influence of inoculum source and pretreatment on biohydrogen production in the dark fermentation process
    Dominska, Marlena
    Pazdzior, Katarzyna
    Slezak, Radoslaw
    Ledakowicz, Stanislaw
    CHEMICAL AND PROCESS ENGINEERING-NEW FRONTIERS, 2024, 45 (02):
  • [5] Biohydrogen production from different biodegradable substrates through dark fermentation
    Maru, B. T.
    Medina, F.
    Sueiras, J. E.
    Stchigel Glikman, A. M.
    NEW BIOTECHNOLOGY, 2009, 25 : S216 - S217
  • [6] Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review
    Ntaikou, I.
    Antonopoulou, G.
    Lyberatos, G.
    WASTE AND BIOMASS VALORIZATION, 2010, 1 (01) : 21 - 39
  • [7] Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review
    I. Ntaikou
    G. Antonopoulou
    G. Lyberatos
    Waste and Biomass Valorization, 2010, 1 : 21 - 39
  • [8] Evolutionary Prediction of Biohydrogen Production by Dark Fermentation
    Akhbari, Azam
    Ibrahim, Shaliza
    Zinatizadeh, Ali A.
    Bonakdari, Hossein
    Ebtehaj, Isa
    Khozani, Zohre S.
    Vafaeifard, Mohsen
    Gharabaghi, Bahram
    CLEAN-SOIL AIR WATER, 2019, 47 (01)
  • [9] Dark fermentation on biohydrogen production: Pure culture
    Lee, Duu-Jong
    Show, Kuan-Yeow
    Su, Ay
    BIORESOURCE TECHNOLOGY, 2011, 102 (18) : 8393 - 8402
  • [10] KEY FACTORS FOR BIOHYDROGEN PRODUCTION BY DARK FERMENTATION
    Clion, Valentin
    Dumas, Christine
    Collin, Sophie
    Ernst, Barbara
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2015, 93 (02): : 309 - 316