AN INTERPOLATION APPROACH TO L∞ A PRIORI ESTIMATES FOR ELLIPTIC PROBLEMS WITH NONLINEARITY ON THE BOUNDARY

被引:0
|
作者
Chhetri, Maya [1 ]
Mavinga, Nsoki [2 ]
Pardo, Rosa [3 ]
机构
[1] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
[2] Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USA
[3] Univ Complutense Madrid, Dept Math Anal & Appl Math, Madrid 28040, Spain
基金
美国国家科学基金会;
关键词
Elliptic problem; nonlinear boundary conditions; subcritical; Gagliardo-Nirenberg interpolation inequality; L-infinity a priori estimate; EQUATIONS; BIFURCATION;
D O I
10.1090/proc/17075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. We establish an explicit L infinity(Omega) a priori estimate for weak solutions to subcritical elliptic problems with nonlinearity on the boundary, in terms of the powers of their H1(Omega) norms. To prove our result, we combine in a novel way Moser type estimates together with elliptic regularity and Gagliardo-Nirenberg interpolation inequality. We illustrate our result with an application to subcritical problems satisfying Ambrosetti-Rabinowitz condition.
引用
收藏
页码:1585 / 1593
页数:9
相关论文
共 50 条