Effect of V addition on the microstructure and wear resistance of CoCrFeNiNb high-entropy alloy laser cladding layers

被引:0
|
作者
Song, Chenxiao [1 ,4 ]
Zhao, Wei [1 ,4 ,5 ]
Bi, Jinpeng [1 ,4 ]
Li, Shuai [2 ]
Gao, Hairui [3 ]
Zhang, Hui [1 ,4 ]
Gao, Song [1 ,4 ]
Lv, Yuexia [1 ,4 ]
Rao, Weifeng [1 ,4 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Mech Engn, Zhengzhou 450045, Peoples R China
[3] Xinpengyuan LIAOCHENG Intelligence Technoly Co Ltd, Liaocheng 252000, Peoples R China
[4] Shandong Inst Mech Design & Res, Jinan 250031, Peoples R China
[5] Shandong Juli Welding Co Ltd, Dezhou 253072, Peoples R China
关键词
High-entropy alloy; Laser cladding; Laves phase; Wear resistance; MECHANICAL-PROPERTIES; SOLID-SOLUTION; BEHAVIOR; TEMPERATURE; PHASE; CLASSIFICATION; STABILITY; OXIDATION; VANADIUM; DESIGN;
D O I
10.1016/j.intermet.2025.108654
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, CoCrFeNiNbVx (x = 0, 0.5, 1, 1.5) high-entropy alloy (HEA) laser cladding layers were fabricated to investigate the effects of V content on the microstructure evolution, as well as room-temperature and high- temperature wear resistance of the cladding layers. It was found that all cladding layers exhibited a typical hypereutectic morphology. With increasing x, the stability of the FCC phase decreased, gradually transitioning from FCC phase + Laves phase (primary Laves phase + secondary Laves phase) + NbC to BCC phase + Laves phase (primary Laves phase + secondary Laves phase). At x = 1, the primary Laves phase accounted for 41.6 % of the structure and exhibited optimal size uniformity. Compared to DT4 industrial pure iron, the microhardness of the cladding layers was significantly improved, which can be attributed to the combined effects of second-phase strengthening, solid solution strengthening and dispersion strengthening. As x increased, the microhardness, room-temperature wear resistance, and high-temperature wear resistance of the cladding layers initially increased and then decreased, reaching optimal values at x = 1, where they were 1.61, 7.04, and 7.40 times higher than those at x = 0, respectively. The improvement in room-temperature wear resistance can be attributed to the increased Laves phase content and the formation of Fe-, V-, and Nb-enriched oxide layers. The enhancement in high-temperature wear resistance is due to the increased Laves phase content and the lubricating effect of VxOy. The addition of V significantly improves the properties of high-entropy alloys and provides an effective approach for preparing cladding layers with good wear resistance and high-temperature wear resistance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microstructure and Wear Resistance of CoCrNiMnTix High-entropy Alloy Coating by Laser Cladding
    Gao, Yu-Long
    Ma, Guo-Liang
    Gao, Xiao-Hua
    Cui, Hong-Zhi
    Surface Technology, 2022, 51 (09): : 351 - 358
  • [2] Microstructure and wear resistance of laser cladding AlCoCrFeNiSiB high-entropy alloy with high boron content
    Li, Lincong
    Wang, Zhaohui
    Du, Wenbo
    Qi, Siyi
    Li, Shubo
    Du, Xian
    SURFACE & COATINGS TECHNOLOGY, 2024, 494
  • [3] Effect of Si addition on microstructure and wear behavior of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding
    Liu, Hao
    Sun, Shifeng
    Zhang, Tong
    Zhang, Guozhong
    Yang, Haifeng
    Hao, Jingbin
    SURFACE & COATINGS TECHNOLOGY, 2021, 405
  • [4] Effects of Annealing on the Microstructure and Wear Resistance of Laser Cladding CrFeMoNbTiW High-Entropy Alloy Coating
    Shen, Qiang
    Li, Yan
    Zhao, Jing
    Liu, Dezheng
    Yang, Yongsheng
    CRYSTALS, 2021, 11 (09)
  • [5] Effect of Fe content on the microstructure and wear resistance of AlCoCrFeNi high-entropy alloy coating prepared by laser cladding
    Li, Ying
    Shi, Yongjun
    Li, Shiwei
    Yan, Xinyu
    Wang, Shuyao
    Zhuo, Xiao
    APPLIED SURFACE SCIENCE, 2025, 685
  • [6] Review on wear resistance of laser cladding high-entropy alloy coatings
    Xiang, Dingding
    Liu, Yusheng
    Yu, Tianbiao
    Wang, Di
    Leng, Xiaoxin
    Wang, Kaiming
    Liu, Lin
    Pan, Jie
    Yao, Sun
    Chen, Zibin
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 911 - 934
  • [7] Influence of Al Addition on the Microstructure and Wear Behavior of Laser Cladding FeCoCrNiAlx High-Entropy Alloy Coatings
    Liu, Yang
    Xu, Zhixiang
    Xu, Gaojie
    Chen, Hongyong
    COATINGS, 2023, 13 (02)
  • [8] Microstructure and wear resistance of AlCoCrFeNiCuSnX high-entropy alloy coatings by plasma cladding
    Xie, Yujiang
    Wen, Xiong
    Yan, Jikang
    Huang, Bensheng
    Zhuang, Jia
    VACUUM, 2023, 214
  • [9] Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding
    Zhao X.
    Cui H.
    Jiang D.
    Song X.
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2023, 40 (11): : 6311 - 6323
  • [10] Effect of WC content on the microstructure and wear resistance of laser cladding AlCoCrFeNiTi0.5 high-entropy alloy coatings
    Yue, Kun
    Wang, Lin
    Xu, Zhe
    Cheng, Chunlong
    Wang, Yeqing
    Fan, Yu
    Xu, Jie
    Wang, Zhijun
    Chen, Zheng
    CERAMICS INTERNATIONAL, 2024, 50 (21) : 41515 - 41526