Prediction method of sugarcane important phenotype data based on multi-model and multi-task

被引:0
|
作者
Sun, Jihong [1 ,2 ]
Sun, Chen [3 ]
Li, Zhaowen [2 ,3 ]
Qian, Ye [2 ,3 ]
Li, Tong [2 ,3 ]
机构
[1] Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming, Yunnan, Peoples R China
[2] Yunnan Agr Univ, Key Lab Crop Prod & Smart Agr Yunnan Prov, Kunming, Yunnan, Peoples R China
[3] Yunnan Agr Univ, Big Data Sch, Kunming, Yunnan, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 12期
关键词
WHEAT YIELD; MODEL; MODIS; CROP;
D O I
10.1371/journal.pone.0312444
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The efficacy of generalized sugarcane yield prediction models holds significant implications for global food security. Given that machine learning algorithms often surpass the precision of remote sensing technology, further exploration of machine learning algorithms in the development of sugarcane yield prediction models is imperative. In this study, we employed six key phenotypic traits of sugarcane, specifically plant height, stem diameter, third-node length (internode length), leaf length, leaf width, and field brix, along with eight machine learning methods: logistic regression, linear regression, K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Backpropagation Neural Network (BPNN), Decision Tree, Random Forest, and the XGBoost algorithm. The aim was to establish an intelligent model ensemble for predicting two crucial phenotypic characteristics-stem diameter and plant height-that determine sugarcane yield, ultimately enhancing the overall yield.The experimental findings indicate that the XGBoost algorithm outperforms the other seven algorithms in predicting these significant phenotypic traits of sugarcane. Furthermore, an analysis of the sugarcane intelligent prediction model's performance under a specialized data environment, incorporating self-prepared data, reveals that the XGBoost algorithm exhibits greater stability. Notably, the data pertaining to these crucial phenotypic traits have a profound impact on the efficacy of the intelligent models. The research demonstrates that a sugarcane yield prediction model ensemble, incorporating multiple intelligent algorithms, can accurately forecast stem diameter and plant height, thereby predicting sugarcane yield. Additionally, this approach, combined with the principles of sugarcane cross-breeding, provides a valuable reference for the artificial breeding of new sugarcane varieties that excel in stem diameter and plant height, bridging a research gap in indirect yield prediction through sugarcane phenotypic traits.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A vulnerability severity prediction method based on bimodal data and multi-task learning
    Du, Xiaozhi
    Zhang, Shiming
    Zhou, Yanrong
    Du, Hongyuan
    JOURNAL OF SYSTEMS AND SOFTWARE, 2024, 213
  • [2] Main steam temperature multi-model prediction and control method based on a multi-model set
    Liu, Ji-Zhen
    Yue, Jun-Hong
    Tan, Wen
    Reneng Dongli Gongcheng/Journal of Engineering for Thermal Energy and Power, 2008, 23 (04): : 395 - 398
  • [3] Multi-task Classification Model Based On Multi-modal Glioma Data
    Li, Jialun
    Jin, Yuanyuan
    Yu, Hao
    Wang, Xiaoling
    Zhuang, Qiyuan
    Chen, Liang
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 165 - 172
  • [4] Multi-Task CNN Model for Attribute Prediction
    Abdulnabi, Abrar H.
    Wang, Gang
    Lu, Jiwen
    Jia, Kui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2015, 17 (11) : 1949 - 1959
  • [5] A simple multi-model prediction method
    Strutzel, Flavio A. M.
    Bogle, I. David L.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 138 : 51 - 76
  • [6] A multi-task deep learning based vulnerability severity prediction method
    Shan, Chun
    Zhang, Ziyi
    Zhou, Siyi
    2023 IEEE 12TH INTERNATIONAL CONFERENCE ON CLOUD NETWORKING, CLOUDNET, 2023, : 307 - 315
  • [7] Wind Power Group Prediction Model Based on Multi-Task Learning
    Wang, Da
    Yang, Mao
    Zhang, Wei
    ELECTRONICS, 2023, 12 (17)
  • [8] Multi-task prediction model based on ConvLSTM and encoder-decoder
    Luo, Tao
    Cao, Xudong
    Li, Jin
    Dong, Kun
    Zhang, Rui
    Wei, Xueliang
    INTELLIGENT DATA ANALYSIS, 2021, 25 (02) : 359 - 382
  • [9] A Mandarin Prosodic Boundary Prediction Model Based on Multi-Task Learning
    Pan, Huashan
    Li, Xiulin
    Huang, Zhiqiang
    INTERSPEECH 2019, 2019, : 4485 - 4488
  • [10] Multi-task aquatic toxicity prediction model based on multi-level features fusion
    Yang, Xin
    Sun, Jianqiang
    Jin, Bingyu
    Lu, Yuer
    Cheng, Jinyan
    Jiang, Jiaju
    Zhao, Qi
    Shuai, Jianwei
    JOURNAL OF ADVANCED RESEARCH, 2025, 68 : 477 - 489