Unsupervised evolution of protein and antibody complexes with a structure-informed language model

被引:11
|
作者
Shanker, Varun R. [1 ,2 ,3 ]
Bruun, Theodora U. J. [2 ,3 ,4 ]
Hie, Brian L. [3 ,4 ,6 ,7 ,8 ]
Kim, Peter S. [3 ,4 ,5 ]
机构
[1] Stanford Univ, Sch Med, Stanford Biophys Program, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford Med Scientist Training Program, Stanford, CA 94305 USA
[3] Stanford Univ, Sarafan ChEM H, Stanford, CA 94305 USA
[4] Stanford Univ, Sch Med, Dept Biochem, Stanford, CA 94305 USA
[5] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
[6] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[7] Stanford Univ, Stanford Data Sci, Stanford, CA 94305 USA
[8] Arc Inst, Palo Alto, CA 94304 USA
关键词
FITNESS LANDSCAPES; SEQUENCE; DESIGN; SELECTION; RECOGNITION; INHIBITION; GENERATION; REVEALS; SET;
D O I
10.1126/science.adk8946
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large language models trained on sequence information alone can learn high-level principles of protein design. However, beyond sequence, the three-dimensional structures of proteins determine their specific function, activity, and evolvability. Here, we show that a general protein language model augmented with protein structure backbone coordinates can guide evolution for diverse proteins without the need to model individual functional tasks. We also demonstrate that ESM-IF1, which was only trained on single-chain structures, can be extended to engineer protein complexes. Using this approach, we screened about 30 variants of two therapeutic clinical antibodies used to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We achieved up to 25-fold improvement in neutralization and 37-fold improvement in affinity against antibody-escaped viral variants of concern BQ.1.1 and XBB.1.5, respectively. These findings highlight the advantage of integrating structural information to identify efficient protein evolution trajectories without requiring any task-specific training data.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 50 条
  • [1] Structure-informed protein language models are robust predictors for variant effects
    Sun, Yuanfei
    Shen, Yang
    HUMAN GENETICS, 2024, : 209 - 225
  • [2] Variant effect prediction using structure-informed protein language models
    Sun, Yuanfei
    Shen, Yang
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 473A - 473A
  • [3] PrePPI: a structure-informed database of protein-protein interactions
    Zhang, Qiangfeng Cliff
    Petrey, Donald
    Garzon, Jose Ignacio
    Deng, Lei
    Honig, Barry
    NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D828 - D833
  • [4] Structure-informed microbial population genetics elucidate selective pressures that shape protein evolution
    Kiefl, Evan
    Esen, Ozcan C.
    Miller, Samuel E.
    Kroll, Kourtney L.
    Willis, Amy D.
    Rappe, Michael S.
    Pan, Tao
    Eren, A. Murat
    SCIENCE ADVANCES, 2023, 9 (08)
  • [5] A molecular structure-informed viscoelastic constitutive model for natural rubber materials
    Jung, Jiwon
    Park, Chanwook
    Ryu, Myung Shin
    Yun, Gun Jin
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2021, 3 (04):
  • [6] Aggrescan4D: structure-informed analysis of pH-dependent protein aggregation
    Barcenas, Oriol
    Kuriata, Aleksander
    Zalewski, Mateusz
    Iglesias, Valentin
    Pintado-Grima, Carlos
    Firlik, Grzegorz
    Burdukiewicz, Michal
    Kmiecik, Sebastian
    Ventura, Salvador
    NUCLEIC ACIDS RESEARCH, 2024, 52 (W1) : W170 - W175
  • [7] Infrequent protein-ligand interactions and protein flexibility on the driver's seat of structure-informed drug discovery
    Duca, Jose S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [8] Protein language models guide directed antibody evolution
    Singh, Arunima
    NATURE METHODS, 2023, 20 (06) : 785 - 785
  • [9] Protein language models guide directed antibody evolution
    Arunima Singh
    Nature Methods, 2023, 20 : 785 - 785
  • [10] Learning the protein language: Evolution, structure, and function
    Bepler, Tristan
    Berger, Bonnie
    CELL SYSTEMS, 2021, 12 (06) : 654 - +