Proper maps of ball complements & differences and rational sphere maps

被引:0
|
作者
Al Helal, Abdullah [1 ]
Lebl, Jiri [1 ]
Nandi, Achinta Kumar [1 ]
机构
[1] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
关键词
Rational sphere maps; proper holomorphic mappings; HOLOMORPHIC MAPS; B-N; MAPPINGS; GAP;
D O I
10.1142/S0129167X24500794
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider proper holomorphic maps of ball complements and differences in complex euclidean spaces of dimension at least two. Such maps are always rational, which naturally leads to a related problem of classifying rational maps taking concentric spheres to concentric spheres, what we call m-fold sphere maps; a proper map of the difference of concentric balls is a two-fold sphere map. We prove that proper maps of ball complements are in one to one correspondence with polynomial proper maps of balls taking infinity to infinity. We show that rational m-fold sphere maps of degree less than m (or polynomial maps of degree m or less) must take all concentric spheres to concentric spheres and we provide a complete classification of them. We prove that these degree bounds are sharp.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Conservative exact rational maps of the sphere
    Barnes, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (02) : 350 - 374
  • [2] On thermodynamics of rational maps on the Riemann sphere
    Dinh, Tien-Cuong
    Nguyen, Viet-Anh
    Sibony, Nessim
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2007, 27 : 1095 - 1109
  • [3] PROPER HOLOMORPHIC MAPS FROM THE BALL TO A POLYDISK
    ALEXANDROV, AB
    DOKLADY AKADEMII NAUK SSSR, 1986, 286 (01): : 11 - 15
  • [4] BOUNDARY-BEHAVIOR OF RATIONAL PROPER MAPS
    CIMA, JA
    SUFFRIDGE, TJ
    DUKE MATHEMATICAL JOURNAL, 1990, 60 (01) : 135 - 138
  • [5] Weakly biharmonic maps from the ball to the sphere
    A. Fardoun
    S. Montaldo
    A. Ratto
    Geometriae Dedicata, 2020, 205 : 167 - 175
  • [6] Weakly biharmonic maps from the ball to the sphere
    Fardoun, A.
    Montaldo, S.
    Ratto, A.
    GEOMETRIAE DEDICATA, 2020, 205 (01) : 167 - 175
  • [7] ON ITERATIONS OF MISIUREWICZ RATIONAL MAPS ON THE RIEMANN SPHERE
    GRZEGORCZYK, P
    PRZYTYCKI, F
    SZLENK, W
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1990, 53 (04): : 431 - 444
  • [8] PROPER HOLOMORPHIC SELF-MAPS OF UNIT BALL
    EISENMAN, DA
    MATHEMATISCHE ANNALEN, 1971, 190 (04) : 298 - &
  • [9] More Weakly Biharmonic Maps from the Ball to the Sphere
    Branding, Volker
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [10] Continuous rational maps into the unit 2-sphere
    Wojciech Kucharz
    Archiv der Mathematik, 2014, 102 : 257 - 261