PAI at SemEval-2023 Task 4: A general multi-label classification system with class-balanced loss function and ensemble module

被引:0
|
作者
Ma, Long [1 ]
Sun, Zeye [1 ]
Jiang, Jiawei [1 ]
Li, Xuan [1 ]
机构
[1] Ping An Life Insurance Co China Ltd, Shenzhen, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Human Value Detection shared task (Kiesel et al., 2023) aims to classify whether or not the argument draws on a set of 20 value categories, given a textual argument. This is a difficult task as the discrimination of human values behind arguments is often implicit. Moreover, the number of label categories can be up to 20 and the distribution of data is highly imbalanced. To address these issues, we employ a multi-label classification model and utilize a class-balanced loss function. Our system wins 5 first places, 2 second places, and 6 third places out of 20 categories of the Human Value Detection shared task, and our overall average score of 0.54 also places third. The code is publicly available at https://www.github.com/diqiuzhuanzhuan/semeval2023.
引用
收藏
页码:256 / 261
页数:6
相关论文
共 10 条
  • [1] Quintilian at SemEval-2023 Task 4: Grouped BERT for Multi-Label classification
    Mopidevi, Ajay Narasimha
    Chenna, Hemanth
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1609 - 1612
  • [2] MarsEclipse at SemEval-2023 Task 3: Multi-Lingual and Multi-Label Framing Detection with Contrastive Learning
    Liao, Qisheng
    Lai, Meiting
    Nakov, Preslav
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 83 - 87
  • [3] LRL_NC at SemEval-2023 Task 4: The Touche23-george-boole Approach for Multi-Label Classification of Human-Values Behind Arguments
    Tandon, Kushagri
    Chatterjee, Niladri
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 136 - 142
  • [4] Mao-Zedong At SemEval-2023 Task 4: Label Represention Multi-Head Attention Model With Contrastive Learning-Enhanced Nearest Neighbor Mechanism For Multi-Label Text Classification
    Zhang, Che
    Liu, Ping'an
    Xiao, Zhenyang
    Fei, Haojun
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 426 - 432
  • [5] Kb at SemEval-2023 Task 3: On Multitask Hierarchical BERT Base Neural Network for Multi-label Persuasion Techniques Detection
    Baraniak, Katarzyna
    Sydow, Marcin
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1395 - 1400
  • [6] Soren Kierkegaard at SemEval-2023 Task 4: Label-aware text classification using Natural Language Inference
    Cepeda, Ignacio Talavera
    Pauli, Amalie Brogaard
    Assent, Ira
    17TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2023, 2023, : 1871 - 1877
  • [7] ShefCDTeam at SemEval-2024 Task 4: A Text-to-Text Model for Multi-Label Classification
    Gibbons, Meredith
    Mi, Maggie
    Villavicencio, Aline
    Song, Xingyi
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1860 - 1867
  • [8] OtterlyObsessedWithSemantics at SemEval-2024 Task 4: Developing a Hierarchical Multi-Label Classification Head for Large Language Models
    Wunderle, Julia
    Schubert, Julian
    Cacciatore, Antonella
    Zehe, Albin
    Pfister, Jan
    Hotho, Andreas
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 602 - 612
  • [9] AISPACE at SemEval-2024 task 8: A Class-balanced Soft-voting System for Detecting Multi-generator Machine-generated Text
    Gu, Renhua
    Meng, Xiangfeng
    PROCEEDINGS OF THE 18TH INTERNATIONAL WORKSHOP ON SEMANTIC EVALUATION, SEMEVAL-2024, 2024, : 1476 - 1481
  • [10] A New Lightweight Architecture and a Class Imbalance Aware Loss Function for Multi-label Classification of Intracranial Hemorrhages
    Lankireddy, Prabhat
    Sindhura, Chitimireddy
    Gorthi, Subrahmanyam
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2022, 2022, 13583 : 397 - 405