Magnetic Nanoparticles and Drug Delivery Systems for Anti-Cancer Applications: A Review

被引:0
|
作者
Graham, Willem [1 ]
Torbett-Dougherty, Mckayla [1 ]
Islam, Akm [1 ]
Soleimani, Shokoufeh [1 ]
Bruce-Tagoe, Tracy Ann [1 ]
Johnson, Jacqueline Ann [1 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
基金
美国国家卫生研究院;
关键词
magnetic nanoparticles; drug delivery systems; nanocarriers; drug delivery; magnetic hyperthermia; magnetic drug release; active targeting; IRON-OXIDE NANOPARTICLES; SUPERPARAMAGNETIC NANOPARTICLES; GENE DELIVERY; DENDRIMER; HYDROGELS; RELEASE; HYPERTHERMIA; LIPOSOMES; NANOMATERIALS; THERAPY;
D O I
10.3390/nano15040285
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cancer continues to be a prominent fatal health issue worldwide, driving the urgent need for more effective treatment strategies. The pressing demand has sparked significant interest in the development of advanced drug delivery systems for chemotherapeutics. The advent of nanotechnology offers a groundbreaking approach, presenting a promising pathway to revolutionize cancer treatment and improve patient outcomes. Nanomedicine-based drug delivery systems have demonstrated the capability of improving the pharmacokinetic properties and accumulation of chemotherapeutic agents in cancer sites while minimizing the adverse side effects. Despite these advantages, most NDDSs exhibit only limited improvement in cancer treatment during clinical trials. The recent development of magnetic nanoparticles (MNPs) for biomedical applications has revealed a potential opportunity to further enhance the performance of NDDSs. The magnetic properties of MNPs can be utilized to increase the targeting capabilities of NDDSs, improve the controlled release of chemotherapeutic agents, and weaken the chemoresistance of tumors with magnetic hyperthermia. In this review, we will explore recent advancements in research for NDDSs for oncology applications, how MNPs and their properties can augment the capabilities of NDDSs when complexed with them and emphasize the challenges and safety concerns of incorporating these systems into cancer treatment.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Fabrication and TXL Anti-cancer Drug Delivery of Magnetic Mesoporous Silica Nanoparticles
    Zhang Zhuoqi
    Geng Haoran
    Xuan Ruifei
    Chen Minmin
    Chen Hui
    Liu Aihui
    Cao Xichuan
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2014, 35 (07): : 1509 - 1514
  • [2] Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review
    Sobczak, Marcin
    Kedra, Karolina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (15)
  • [3] Synthesis and Evaluation of Multi Layered Magnetic Nanoparticles as Versatile Carrier for Anti-Cancer Drug Delivery
    Latha, Subbiah
    Selvamani, Palanisamy
    Prabha, Thangavelu
    Natarajan, Jawahar
    INTERNATIONAL JOURNAL OF LIFE SCIENCE AND PHARMA RESEARCH, 2020, 10 (02): : 16 - 25
  • [4] Magnetic Nanoparticles and Thermally Responsive Polymer for Targeted Hyperthermia and Sustained Anti-Cancer Drug Delivery
    Wang, Sarah Y.
    Liu, Michelle C.
    Kang, Kyung A.
    OXYGEN TRANSPORT TO TISSUE XXXIV, 2013, 765 : 315 - 321
  • [5] Review of computer simulations on anti-cancer drug delivery in MOFs
    Kotzabasaki, Marianna
    Froudakis, George E.
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (06): : 1255 - 1272
  • [6] BioMOF-Based Anti-Cancer Drug Delivery Systems
    Elmehrath, Sandy
    Nguyen, Ha L.
    Karam, Sherif M.
    Amin, Amr
    Greish, Yaser E.
    NANOMATERIALS, 2023, 13 (05)
  • [7] Thermochemotherapy with controlled drug delivery using a novel magnetic anti-cancer drug
    Sato, Itaru
    Mitsudo, Kenji
    Umemura, Masanari
    Feng, Xianfeng
    Fukumura, Hidenobu
    Eguchi, Haruki
    Nakashima, Hideyuki
    Kioi, Mitomu
    Tohnai, Iwai
    Ishikawa, Yoshihiro
    CANCER RESEARCH, 2013, 73 (08)
  • [8] Biocompatible Amphiphilic Pentablock Copolymeric Nanoparticles for Anti-Cancer Drug Delivery
    Byagari, K.
    Shanavas, A.
    Rengan, A. K.
    Kundu, G. C.
    Srivastava, R.
    JOURNAL OF BIOMEDICAL NANOTECHNOLOGY, 2014, 10 (01) : 109 - 119
  • [9] Editorial: Anti-cancer drug delivery: lipid-based nanoparticles
    Alkilany, Alaaldin M.
    Elhissi, Abdelbary
    Alshaer, Walhan
    Kunwar, Amit
    Giri, Jyotsnendu
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [10] Zapped assembly of polymeric (ZAP) nanoparticles for anti-cancer drug delivery
    Dunn, Stuart S.
    Luft, J. Christopher
    Parrott, Matthew C.
    NANOSCALE, 2019, 11 (04) : 1847 - 1855