Numerical investigation of bubble dynamics in ageing foams using a phase-field model

被引:0
|
作者
Holland-Cunz, Jana [2 ,3 ]
Reiter, Andreas [1 ,2 ]
Hoetzer, Johannes [1 ,2 ]
August, Anastasia [2 ,3 ]
Selzer, Michael [2 ,3 ]
Nestler, Britta [1 ,2 ,3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat MMS, Str Forum 7, D-76131 Karlsruhe, Germany
[2] Karlsruhe Univ Appl Sci, Inst Digital Mat Sci IDM, Moltkestr 30, D-76133 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Dry foam; Foam decay; Numerical simulation; Coalescence; Film rupture; Phase-field method;
D O I
10.1016/j.commatsci.2024.113557
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel numerical method for simulating liquid foam decay has been developed. This method is based on a phase-field model and captures gas pressure inside the bubbles. It employs an algorithm that includes the spontaneous rupture of foam separating films and coalescence of bubbles. We found that the microstructure evolution in liquid foam in the dry foam limit is predicted. The numerical results demonstrate that the foam ageing dynamics are mapped for the decay process due to successive coalescence events. Moreover, the method is well suited for large-scale microstructure simulations. This allows the investigation of statistical properties of foams, based on the structures' characteristics at the bubble scale. In summary, the method is effective to gain insight into the impact of fundamental factors controlling the evolution and dynamics of decaying liquid foam.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Direct Numerical Simulation of Bubble Dynamics Using Phase-Field Model and Lattice Boltzmann Method
    Shu, Shuli
    Yang, Ning
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (33) : 11391 - 11403
  • [2] Investigation of bubble dynamics in a micro-channel with obstacles using a conservative phase-field lattice Boltzmann method
    Zhang, Ang
    Su, Dongbo
    Li, Chuangming
    Zhang, Ying
    Jiang, Bin
    Pan, Fusheng
    PHYSICS OF FLUIDS, 2022, 34 (04)
  • [3] Numerical simulation of Ostwald ripening using the phase-field model
    Ode, M
    Kim, SG
    Kim, WT
    Suzuki, T
    SECOND INTERNATIONAL CONFERENCE ON PROCESSING MATERIALS FOR PROPERTIES, 2000, : 1065 - 1068
  • [4] Numerical simulations of the dynamics of axisymmetric compound liquid threads with a phase-field model
    Yang, Junxiang
    Li, Yibao
    Lee, Chaeyoung
    Kim, Junseok
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 89 : 203 - 216
  • [5] Direct numerical simulation of homogeneous nucleation and growth in a phase-field model using cell dynamics method
    Iwamatsu, Masao
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08):
  • [6] NUMERICAL INVESTIGATION OF THE DISCRETE SOLUTION OF PHASE-FIELD EQUATION
    Eichler, Pavel
    Malik, Michal
    Oberhuber, Tomas
    Fucik, Radek
    ALGORITMY 2020: 21ST CONFERENCE ON SCIENTIFIC COMPUTING, 2020, : 111 - 120
  • [7] Investigation of crack propagation in plain concrete using Phase-field model
    Lateef, Hanadi Abdulridha
    Laftah, Rafil Mahmood
    Jasim, Nabeel Abdulrazzaq
    MATERIALS TODAY-PROCEEDINGS, 2022, 57 : 375 - 382
  • [8] Phase-field modeling and peridynamics for defect dynamics, and an augmented phase-field model with viscous stresses
    Chua, Janel
    Agrawal, Vaibhav
    Breitzman, Timothy
    Gazonas, George
    Dayal, Kaushik
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2022, 159
  • [9] Numerical investigation of oil droplet detachment from wall surface by a microbubble using ternary phase-field model
    Yuhara, Yuki
    Shirzadi, Mohammadreza
    Fukasawa, Tomonori
    Fukui, Kunihiro
    Ishigami, Toru
    AICHE JOURNAL, 2024, 70 (03)
  • [10] Numerical Phase-Field Model Validation for Dissolution of Minerals
    Yang, Sha
    Ukrainczyk, Neven
    Caggiano, Antonio
    Koenders, Eddie
    APPLIED SCIENCES-BASEL, 2021, 11 (06):