Digital twin-driven management strategies for logistics transportation systems

被引:0
|
作者
Junfeng Li [1 ]
Jianyu Wang [1 ]
机构
[1] Nanjing University of Science and Technology,School of Automation
关键词
Digital twin; Transportation behavior prediction; Decision aid; Unmanned vehicles; LSTM;
D O I
10.1038/s41598-025-96641-z
中图分类号
学科分类号
摘要
With the development of Industry 5.0, the logistics industry, serving as a bridge between production and consumption, is undergoing profound changes. However, this transformation faces challenges such as data fragmentation, difficult system integration, and insufficient real-time monitoring capabilities. Consequently, the modern logistics system demands higher standards for the prediction and management of transportation behavior. To address these challenges, this paper introduces Digital Twin (DT) technology and proposes a research methodology for DT-driven management strategies. DT technology constructs virtual models of physical objects to enable real-time monitoring and data analysis of unmanned vehicle states, effectively resolving the identified issues. Specifically, the proposed method leverages DT to integrate multi-source heterogeneous data and establishes a digital model of unmanned vehicles. Furthermore, it combines the LSTM neural network algorithm to design a predictive model for time-series forecasting of transportation behaviors. The digital model is dynamically adjusted based on prediction results, further optimizing the management strategy. Finally, the effectiveness of the proposed method is validated through a case study on unmanned vehicle transportation behavior. Experimental results demonstrate that the DT-based management strategy significantly improves the accuracy of predicting unmanned vehicle transportation behaviors and exhibits superior performance in decision aid and fault tolerance. Additionally, simulation tests confirm the reliability and efficiency of the improved algorithm in practical applications, providing an important reference for the intelligent development of modern logistics systems.
引用
收藏
相关论文
共 50 条
  • [1] Digital Twin-Driven Approach for Smart City Logistics: The Case of Freight Parking Management
    Liu, Yu
    Folz, Pauline
    Pan, Shenle
    Ramparany, Fano
    Bolle, Sebastien
    Ballot, Eric
    Coupaye, Thierry
    ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS: ARTIFICIAL INTELLIGENCE FOR SUSTAINABLE AND RESILIENT PRODUCTION SYSTEMS, APMS 2021, PT IV, 2021, 633 : 237 - 246
  • [2] Digital twin-driven safety management and decision support approach for port operations and logistics
    Wang, Kan
    Xu, Hang
    Wang, Hao
    Qiu, Rui
    Hu, Qianqian
    Liu, Xiaolei
    FRONTIERS IN MARINE SCIENCE, 2024, 11
  • [3] Digital twin-driven lifecycle management for motorized spindle
    Fan, Kaiguo
    Liu, Jiahui
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 135 (1-2): : 443 - 455
  • [4] Management of Digital Twin-Driven IoT Using Federated Learning
    Abdulrahman, Sawsan
    Otoum, Safa
    Bouachir, Ouns
    Mourad, Azzam
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3636 - 3649
  • [5] A digital twin-driven production management system for production workshop
    Ma, Jun
    Chen, Huimin
    Zhang, Yu
    Guo, Hongfei
    Ren, Yaping
    Mo, Rong
    Liu, Luyang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 110 (5-6): : 1385 - 1397
  • [6] Digital twin-driven prognostics and health management for industrial assets
    Xiao, Bin
    Zhong, Jingshu
    Bao, Xiangyu
    Chen, Liang
    Bao, Jinsong
    Zheng, Yu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] A digital twin-driven production management system for production workshop
    Jun Ma
    Huimin Chen
    Yu Zhang
    Hongfei Guo
    Yaping Ren
    Rong Mo
    Luyang Liu
    The International Journal of Advanced Manufacturing Technology, 2020, 110 : 1385 - 1397
  • [8] Digital Twin-Driven Computing Resource Management for Vehicular Networks
    Li, Mushu
    Gao, Jie
    Zhou, Conghao
    Shen, Xuemin
    Zhuang, Weihua
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5735 - 5740
  • [9] Management of Digital Twin-Driven IoT Using Federated Learning
    Abdulrahman, Sawsan
    Otoum, Safa
    Bouachir, Ouns
    Mourad, Azzam
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3636 - 3649
  • [10] Enhancing production system resilience with digital twin-driven management
    Sanchez, Marisa A.
    Rossit, Daniel
    Tohme, Fernando
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024,