Ionization induced by fluid-solid interaction during hypervelocity impact

被引:0
|
作者
Islam, Shafquat T. [1 ]
Narkhede, Aditya [1 ]
Asimow, Paul D. [2 ]
Michopoulos, John G. [3 ]
Wang, Kevin [1 ]
机构
[1] Virginia Tech, Dept Aerosp & Ocean Engn, 1600 Innovat Dr, Blacksburg, VA 24060 USA
[2] CALTECH, Div Geol & Planetary Sci, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[3] Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
基金
美国国家科学基金会;
关键词
Hypervelocity impact; Glass; Ionization; Equation of state; Simulation; SHOCK; COMPRESSION; FIVER;
D O I
10.1016/j.ijsolstr.2025.113278
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper presents a computational model to represent and investigate hypervelocity impacts that occur in an atmospheric environment, focusing on energy partitions and impact-induced ionization. The computational domain includes the projectile, the target, and the ambient gas. The physical model combines the compressible Navier-Stokes equations, a complete thermodynamic equation of state (EOS) for each material, and a non-ideal, multi-species Saha equation for ionization prediction. Material interfaces are tracked using an extended two- equation level set method, and the interfacial mass, momentum, and energy fluxes are computed by the FIVER (FInite Volume method with Exact multi-material Riemann problems) method. Using this model, the impact of tantalum on soda-lime glass (SLG) within argon gas is analyzed. Shock compression experiments are conducted to capture the thermodynamics of SLG under high pressure and temperature, yielding shock Hugoniot data up to 112 GPa and 5300 K. This data is used to calibrate a Noble-Abel stiffened gas EOS. Impact simulations are performed with initial velocity ranging from 3 km/s to 7 km/s. Time histories of the pressure, temperature, and plasma density fields are compared across the three materials. Less than 1% of the total impact energy is transferred to the ambient gas, yet its specific internal energy is of the same order of magnitude as that of the projectile and target. Argon gas exhibits higher temperature and plasma density than SLG and tantalum. The ionization of SLG is found to be highly selective, with the metallic elements contributing over 99.9% of the plasma's charged particles despite comprising less than 15% of the molar composition. In general, the results suggest that the plasma's density and energy depend on both impact velocity and the material combination, including the ambient gas. The plasma's composition further reflects the properties (e.g., ionization energies) of the chemical elements in each material.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Fluid-solid coupled simulation of hypervelocity impact and plasma formation
    Islam, Shafquat T.
    Ma, Wentao
    Michopoulos, John G.
    Wang, Kevin
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2023, 180
  • [2] Simulating fluid-solid interaction
    Génevaux, O
    Habibi, A
    Dischler, JM
    GRAPHICS INTERFACE 2003, PROCEEDING, 2003, : 31 - 38
  • [3] Fluid-solid interaction - a new trend
    Molki, Majid
    HEAT TRANSFER ENGINEERING, 2008, 29 (12) : 975 - 976
  • [4] A QUASIVARIATIONAL PRINCIPLE FOR FLUID-SOLID INTERACTION
    SARIGUL, N
    DOKMECI, MC
    AIAA JOURNAL, 1984, 22 (08) : 1173 - 1175
  • [5] Numerical Analysis of Hydrodynamic Pressure Induced by Fluid-Solid Impact
    黄玉盈
    邹时智
    钱勤
    李其申
    ChinaOceanEngineering, 2000, (01) : 1 - 13
  • [6] AN INVERSE FLUID-SOLID INTERACTION PROBLEM
    Monk, Peter
    Selgas, Virginia
    INVERSE PROBLEMS AND IMAGING, 2009, 3 (02) : 173 - 198
  • [7] Fluid-solid interaction in a rectangular container
    Chai, XJ
    Genevaux, JM
    Brancher, JP
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 1996, 15 (06) : 865 - 883
  • [8] Numerical analysis of hydrodynamic pressure induced by fluid-solid impact
    Huang, YY
    Zou, SZ
    Qian, Q
    Li, QS
    CHINA OCEAN ENGINEERING, 2000, 14 (01) : 1 - 13
  • [9] An inverse problem for fluid-solid interaction
    Elschner, Johannes
    Hsiao, George C.
    Rathsfeld, Andreas
    INVERSE PROBLEMS AND IMAGING, 2008, 2 (01) : 83 - 119
  • [10] Modeling and simulation of the fluid-solid interaction in wetting
    Wolf, Fabiano G.
    dos Santos, Luis O. E.
    Philippi, Paulo C.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,