A Remark on the Ratio of Consecutive Primes

被引:0
|
作者
Nakai, Hirofumi [1 ]
机构
[1] Tokyo City Univ, Fac Nat Sci, 1-28-1 Tamazutsumi,Setagaya Ku, Tokyo 1588557, Japan
来源
AMERICAN MATHEMATICAL MONTHLY | 2024年 / 131卷 / 10期
关键词
11A41; 11N05;
D O I
10.1080/00029890.2024.2393995
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the difference between two sequences p(n)/p(n+1) and n/(n+1), both of which converge to 1, switches sign infinitely many times. We also mention some applications.
引用
收藏
页码:903 / 904
页数:2
相关论文
共 50 条
  • [1] ON THE RATIO OF CONSECUTIVE PRIMES
    Copil, Vlad
    Panaitopol, Laurentiu
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (01) : 203 - 210
  • [2] EXPLICIT RESULTS ON RATIO OF CONSECUTIVE PRIMES
    MANDL, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A600 - A600
  • [3] Remark on twin primes
    Sandor, Jozsef
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2014, 20 (03) : 29 - 30
  • [4] CONSECUTIVE PRIMES
    KATAI, I
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1977, 30 (1-2): : 163 - 167
  • [5] A REMARK ON PRIMES IN ARITHMETIC PROGRESSIONS
    ALTER, R
    VILLARIN.MB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 85 - &
  • [6] ON THE DIFFERENCE OF CONSECUTIVE PRIMES
    ERDOS, P
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 54 (10) : 885 - 889
  • [7] RESULT ON CONSECUTIVE PRIMES
    KATAI, I
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1976, 27 (1-2): : 153 - 159
  • [8] Consecutive primes in tuples
    Banks, William D.
    Freiberg, Tristan
    Turnage-Butterbaugh, Caroline L.
    ACTA ARITHMETICA, 2015, 167 (03) : 261 - 266
  • [9] A REMARK ON EUCLID PROOF OF THE INFINITUDE OF PRIMES
    COSGRAVE, JB
    AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (04): : 339 - 341
  • [10] DIFFERENCE BETWEEN CONSECUTIVE PRIMES
    HEATHBROWN, DR
    IWANIEC, H
    INVENTIONES MATHEMATICAE, 1979, 55 (01) : 49 - 69