The synchronization criteria for uncertain nonlinear Caputo-Hadamard fractional-order systems with time-delay output feedback control

被引:0
|
作者
Hong, Duong Thi [1 ,2 ]
Thanh, Nguyen Truong [2 ]
机构
[1] TNU Univ Sci, Dept Math & Informat, Thai Nguyen, Vietnam
[2] Hanoi Univ Sci & Technol, Fac Math & Informat, Hanoi, Vietnam
关键词
Caputo-Hadamard fractional order system; Synchronization analysis; Fractional Halanay inequality; Time delay feedback control; Linear matrix inequality (LMI); MASTER-SLAVE SYNCHRONIZATION; LURE SYSTEMS; NEURAL-NETWORKS; STABILITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The methods of Master-Slave synchronization analysis with output feedback control for uncertain nonlinear Caputo-Hadamard fractional order systems without delay and with time-varying delay are presented in this study. To provide a synchronization criterion for the system instantaneously, we first apply the Lyapunov function approach for Caputo-Hadamard fractional order systems. Next, we construct novel synchronization conditions for the presence of time delay feedback control that ensure asymptotic stability of the error systems by combining fractional-order Halanay inequality with some features of the Caputo-Hadamard derivative. It is consequently possible to efficiently check the resulting conditions because they are provided in terms of linear matrix inequalities (LMIs). To demonstrate the usefulness of the acquired results, two numerical examples are suggested.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The synchronization criteria for uncertain nonlinear Caputo–Hadamard fractional-order systems with time-delay output feedback controlThe synchronization criteria for uncertain nonlinear Caputo...D. T. Hong, N. T. Thanh
    Duong Thi Hong
    Nguyen Truong Thanh
    Rendiconti del Circolo Matematico di Palermo Series 2, 2025, 74 (1):
  • [2] Output feedback NN tracking control for fractional-order nonlinear systems with time-delay and input quantization
    Hua, Changchun
    Ning, Jinghua
    Zhao, Guanglei
    Li, Yafeng
    NEUROCOMPUTING, 2018, 290 : 229 - 237
  • [3] Practical Stability of Observer-Based Control for Nonlinear Caputo-Hadamard Fractional-Order Systems
    Issaoui, Rihab
    Naifar, Omar
    Tlija, Mehdi
    Mchiri, Lassaad
    Ben Makhlouf, Abdellatif
    FRACTAL AND FRACTIONAL, 2024, 8 (09)
  • [4] Separation principle for Caputo-Hadamard fractional-order fuzzy systems
    Rguigui, Hafedh
    Elghribi, Moncef
    ASIAN JOURNAL OF CONTROL, 2025,
  • [5] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    He, Bin-Bin
    Zhou, Hua-Cheng
    Kou, Chun-Hai
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2420 - 2445
  • [6] Adaptive Neural Network Synchronization Control for Uncertain Fractional-Order Time-Delay Chaotic Systems
    Yan, Wenhao
    Jiang, Zijing
    Huang, Xin
    Ding, Qun
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [7] Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay
    Bin-Bin He
    Hua-Cheng Zhou
    Chun-Hai Kou
    Fractional Calculus and Applied Analysis, 2022, 25 : 2420 - 2445
  • [8] Output feedback finite-time dissipative control for uncertain nonlinear fractional-order systems
    Duong Thi Hong
    Nguyen Huu Sau
    Mai Viet Thuan
    ASIAN JOURNAL OF CONTROL, 2022, 24 (05) : 2284 - 2293
  • [9] Output Regulation for a Class of Uncertain Nonlinear Time-delay Systems by Output Feedback Control
    Gui-Zhi Meng
    Ke-Mao Ma
    International Journal of Control, Automation and Systems, 2020, 18 : 867 - 876
  • [10] Output Regulation for a Class of Uncertain Nonlinear Time-delay Systems by Output Feedback Control
    Meng, Gui-Zhi
    Ma, Ke-Mao
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2020, 18 (04) : 867 - 876