A new granule extrusion-based for 3D printing of POE: studying the effect of printing parameters on mechanical properties with "response surface methodology"

被引:0
|
作者
Gao, Xiangyu [1 ]
Yao, Tianqi [2 ]
Gao, Fanru [3 ]
Chen, Yixue [3 ]
Jian, Xiangzhou [4 ]
Ma, Haowei [3 ]
机构
[1] Univ Sains Malaysia, Sch Mat & Mineral Resources Engn, Engn Campus, Nibong Tebal Penang 14300, Malaysia
[2] Sinopec Engn Inc, Civil Dept, Beijing 100101, Peoples R China
[3] Case Western Reserve Univ, Dept Mech & Aerosp Enginerring, Cleveland, OH 44106 USA
[4] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
关键词
Additive manufacturing; Polyolefin elastomers (POE); Fused deposition modeling (FDM); Box-Behnken design (BBD); Mechanical properties; Scanning electron microscopy "SEM; PARTS; BEHAVIOR;
D O I
10.1007/s13726-024-01405-7
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Printing elastomers face major challenges due to properties such as high melt strength, high shrinkage rate, and the potential for buckling during printing. This paper introduces the first use of pellet extrusion-based "fused deposition modeling" (FDM) for directly printing polyolefin elastomers (POE). In addition, the impact of critical parameters in this printing process (speed, nozzle temperature, and diameter) was investigated using Box-Behnken design (BBD). The analysis of variance (ANOVA) revealed that most factors had P values below 0.05, indicating their significant influence on the results. The P values for ultimate tensile strength (UTS), elongation, and modulus of elasticity model were 0.0118, 0.0001, and 0.007, respectively. Experimental results demonstrated UTS values ranging from 2.76 to 4.88 MPa and elongation values ranging from 1575 to 2788%. Scanning electron microscopy (SEM) imaging of fracture cross-sections showed acceptable quality of printed samples, although the upper layers of the bed exhibited noticeable shrinkage. Increasing the speed and reducing the nozzle temperature can effectively decrease the cooling rate, enhancing adhesion quality and reducing microholes, as long as it does not negatively impact the feeding rate. These findings, which demonstrate the ability to print high-quality elastomeric parts and overcome printing limitations, have the potential to attract more attention and expand the printing of functional elastomers in various fields.
引用
收藏
页码:739 / 750
页数:12
相关论文
共 50 条
  • [1] The microstructure and mechanical properties of nickel fabricated by material extrusion-based 3D printing
    Song, Daosen
    Ye, Guiyou
    Shi, Kai
    Han, Zhifeng
    Zhou, Wei
    Fu, Zhiguo
    Guo, Chenxu
    Gao, Gongru
    Zhang, Guangming
    AIP ADVANCES, 2024, 14 (06)
  • [2] Reactive Processing in Extrusion-Based 3D Printing to Improve Isotropy and Mechanical Properties
    Levenhagen, Neiko P.
    Dadmun, Mark D.
    MACROMOLECULES, 2019, 52 (17) : 6495 - 6501
  • [3] Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour
    Zhu, Sicong
    Stieger, Markus A.
    van der Goot, Atze Jan
    Schutyser, Maarten A. I.
    INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES, 2019, 58
  • [4] Extrusion-based 3D printing of ceramic components
    Faes, M.
    Valkenaers, H.
    Vogeler, F.
    Vleugels, J.
    Ferraris, E.
    3RD CIRP GLOBAL WEB CONFERENCE - PRODUCTION ENGINEERING RESEARCH ADVANCEMENT BEYOND STATE OF THE ART (CIRPE2014), 2015, 28 : 76 - 81
  • [5] Microfluidics: A New Layer of Control for Extrusion-Based 3D Printing
    Serex, Ludovic
    Bertsch, Arnaud
    Renaud, Philippe
    MICROMACHINES, 2018, 9 (02)
  • [6] Mechanical characterisation for numerical simulation of extrusion-based 3D concrete printing
    van den Heever, Marchant
    Bester, Frederick
    Kruger, Jacques
    van Zijl, Gideon
    JOURNAL OF BUILDING ENGINEERING, 2021, 44
  • [7] Mechanical properties of engineered cementitious composites beams fabricated by extrusion-based 3D printing
    Zhu, Binrong
    Pan, Jinlong
    Zhou, Zhenxin
    Cai, Jingming
    ENGINEERING STRUCTURES, 2021, 238
  • [8] Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing
    Tascioglu, Emre
    Kitay, Ozhan
    Keskin, Ali Ozkan
    Kaynak, Yusuf
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (04)
  • [9] Effect of printing parameters and post-process on surface roughness and dimensional deviation of PLA parts fabricated by extrusion-based 3D printing
    Emre Taşcıoğlu
    Özhan Kıtay
    Ali Özkan Keskin
    Yusuf Kaynak
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [10] Effect of printing parameters on mechanical properties of extrusion-based additively manufactured ceramic parts
    Rane, Kedarnath
    Farid, Muhammad Asad
    Hassan, Waqar
    Strano, Matteo
    CERAMICS INTERNATIONAL, 2021, 47 (09) : 12189 - 12198