8p阶13度对称图

被引:0
|
作者
蒋威
娄本功
机构
[1] 云南大学数学与统计学院
关键词
对称图; 自同构群; s-弧传递图; 正规覆盖;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
一个图称为对称的,如果图的自同构群作用在图的弧集上是传递的.利用单群的分类,给出了8p阶13度对称图的完全分类,证明了8p阶13度对称图存在当且仅当素数p=7,该图在同构意义下只有两个,分别为K414或C156.
引用
收藏
页码:45 / 51
页数:7
相关论文
共 15 条
  • [1] On prime-valent symmetric graphs of order four times an odd prime power
    Pan, Jiangmin
    Zhang, Yingnan
    Wang, Chao
    Huang, Junjie
    [J]. COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 3840 - 3852
  • [2] Edge-transitive graphs and combinatorial designs.[J].Heather A. Newman;Hector Miranda;Adam Gregory;Darren A. Narayan.Involve; a Journal of Mathematics.2019, 8
  • [3] Pentavalent symmetric graphs of order four times an odd square-free integer
    Ling, Bo
    Lou, Ben Gong
    Wu, Ci Xuan
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (01) : 81 - 95
  • [4] On arc-transitive metacyclic covers of graphs with order twice a prime
    Huang, Zhaohong
    Pan, Jiangmin
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (03):
  • [5] A characterisation on arc-transitive graphs of prime valency.[J].Jing Jian Li;Bo Ling;Guodong Liu.Applied Mathematics and Computation.2018,
  • [6] 2-Arc-transitive cyclic covers of <Emphasis Type="Italic">K</Emphasis> <Subscript> <Emphasis Type="Italic">n</Emphasis>;<Emphasis Type="Italic">n</Emphasis> </Subscript>−<Emphasis Type="Italic">nK</Emphasis> <Subscript>2</Subscript>.[J].Wenqin Xu;Shaofei Du.Journal of Algebraic Combinatorics.2014, 4
  • [7] Finite 2-arc-transitive abelian Cayley graphs.[J].Cai Heng Li;Jiangmin Pan.European Journal of Combinatorics.2006, 1
  • [8] Classifying cubic symmetric graphs of order 8 p or 8 p 2.[J].Yan-Quan Feng;Jin Ho Kwak;Kaishun Wang.European Journal of Combinatorics.2004, 7
  • [9] Analysing finite locally s-arc transitive graphs
    Giudici, M
    Li, CH
    Praeger, CE
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (01) : 291 - 317
  • [10] On 2-arc-transitive covers of complete graphs
    Du, SF
    Marusic, D
    Waller, AO
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) : 276 - 290