Transcriptome size matters for single-cell RNA-seq normalization and bulk deconvolution

被引:0
|
作者
Lu, Songjian [1 ]
Yang, Jiyuan [1 ]
Yan, Lei [1 ]
Liu, Jingjing [1 ]
Wang, Judy Jiaru [1 ]
Jain, Rhea [1 ]
Yu, Jiyang [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Computat Biol, Memphis, TN 38105 USA
基金
美国国家卫生研究院;
关键词
RECONSTRUCTION;
D O I
10.1038/s41467-025-56623-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The variation of transcriptome size across cell types significantly impacts single-cell RNA sequencing (scRNA-seq) data normalization and bulk RNA-seq cellular deconvolution, yet this intrinsic feature is often overlooked. Here we introduce ReDeconv, a computational algorithm that incorporates transcriptome size into scRNA-seq normalization and bulk deconvolution. ReDeconv introduces a scRNA-seq normalization approach, Count based on Linearized Transcriptome Size (CLTS), which corrects differential expressed genes typically misidentified by standard count per 10 K normalization, as confirmed by orthogonal validations. By maintaining transcriptome size variation, CLTS-normalized scRNA-seq enhances the accuracy of bulk deconvolution. Additionally, ReDeconv mitigates gene length effects and models expression variances, thereby improving deconvolution outcomes, particularly for rare cell types. Evaluated with both synthetic and real datasets, ReDeconv surpasses existing methods in precision. ReDeconv alters the practice and provides a new standard for scRNA-seq analyses and bulk deconvolution. The software packages and a user-friendly web portal are available.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [2] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [3] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [4] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [5] SCnorm: robust normalization of single-cell RNA-seq data
    Rhonda Bacher
    Li-Fang Chu
    Ning Leng
    Audrey P Gasch
    James A Thomson
    Ron M Stewart
    Michael Newton
    Christina Kendziorski
    Nature Methods, 2017, 14 : 584 - 586
  • [6] HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)
    Yen-Jung Chiu
    Chung-En Ni
    Yen-Hua Huang
    BMC Medical Genomics, 16
  • [7] HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD)
    Chiu, Yen-Jung
    Ni, Chung-En
    Huang, Yen-Hua
    BMC MEDICAL GENOMICS, 2023, 16 (SUPPL 2)
  • [8] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Teschendorff, Andrew E.
    Zhu, Tianyu
    Breeze, Charles E.
    Beck, Stephan
    GENOME BIOLOGY, 2020, 21 (01) : 1
  • [9] EPISCORE: cell type deconvolution of bulk tissue DNA methylomes from single-cell RNA-Seq data
    Andrew E. Teschendorff
    Tianyu Zhu
    Charles E. Breeze
    Stephan Beck
    Genome Biology, 21
  • [10] Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq
    Cole, Michael B.
    Risso, Davide
    Wagner, Allon
    DeTomaso, David
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    Yosef, Nir
    CELL SYSTEMS, 2019, 8 (04) : 315 - +