Composite Gel Polymer Electrolyte for High-Performance Flexible Zinc-Air Batteries

被引:0
|
作者
Liu, Yifan [1 ]
Bildan, Denise [2 ]
Zhuge, Xiangqun [1 ]
Liu, Tong [1 ]
Zhong, Haoyang [3 ]
Luo, Zhihong [4 ]
Lei, Hanhui [2 ]
Luo, Kun [1 ]
Ren, Yurong [1 ]
Bayati, Maryam [2 ]
Liu, Xiaoteng [1 ,2 ]
机构
[1] Jiangsu Province Engineering Research Centre of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, School of Materials Science and Engineering, Changzhou University, Changzhou,213164, China
[2] Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne,NE1 8ST, United Kingdom
[3] School of Materials Science and Biomedical Engineering, University of Wisconsin-Eau Claire, 105 Garfield Avenue, Eau Claire,WI,54702-4004, United States
[4] College of Materials Science and Engineering, Guilin University of Technology, Guilin,541004, China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Mesoporous materials - Solid electrolytes - Zinc air batteries;
D O I
10.1002/smll.202408015
中图分类号
学科分类号
摘要
Enhancing ionic conductivity and electrolyte uptake is of significance for gel polymer electrolytes (GPEs) for flexible zinc-air batteries (FZABs). Herein, a composite mesoporous silica/polyacrylamide (5 wt.% mPAM) GPE is constructed with comparable ionic conductivity to aqueous electrolytes, where the ionic conductivity is up to 337 mS cm−1, and the weight loss after exposing in air 72 h is less than 18%, owing to the excellent electrolyte uptake and continuous ion migration network provided by the mesoporous silica fillers. When used as a quasi-solid-electrolyte, the rechargeable FZAB exhibited high electrochemical performance and structural stability, where the peak power density is up to 162.8 mW cm−2, and the initial charge–discharge potential gap is as low as 0.62 V, resulting in a long lifespan exceeding 110 h, showcasing the combination of high durability, cost-effectiveness and easy production for practical applications. © 2024 The Author(s). Small published by Wiley-VCH GmbH.
引用
收藏
相关论文
共 50 条
  • [1] Gel polymer electrolyte with MXene to extend cycle lifespan of flexible and rechargeable Zinc-Air batteries
    Chen, Zhaoyang
    Li, Wenqiong
    Yang, Xing
    Ke, Chujun
    Chen, Hanxue
    Li, Qingyu
    Guo, Jiaming
    He, Yun
    Guo, Zeping
    Liang, Xiaoguang
    JOURNAL OF POWER SOURCES, 2022, 523
  • [2] Starch-reinforced adhesive hydrogel electrolyte enables high-performance flexible zinc-air batteries
    Dai, Jing
    Chen, Peng
    Meng, Fancheng
    Han, Feizi
    Zhu, Chenming
    Wei, Xiangfeng
    Zheng, Lianxi
    Liu, Jiehua
    Journal of Energy Storage, 2024, 102
  • [3] Agar-PVA/GO double network gel electrolyte for high performance flexible zinc-air batteries
    Yang, Yue
    Wang, Tao
    Guo, Yong
    Liu, Penggao
    Han, Xiaofeng
    Wu, Dongling
    MATERIALS TODAY CHEMISTRY, 2023, 29
  • [4] Improving Performance and Cyclability of Printed Flexible Zinc-air Batteries using Carbopol Gel Electrolyte
    Chaduang, S.
    Lao-atiman, W.
    Kheawhom, S.
    BATTERY ELECTROLYTES, 2017, 77 (01): : 55 - 62
  • [5] Advancements in Gel Electrolytes for High-Performance Zinc-Air Batteries to Stabilize Zinc Anodes
    Zhu, Yan
    Zheng, Dexu
    Xing, Xinxin
    Wu, Sajian
    Guo, Xiaojun
    Liu, Jishuang
    Guo, Xin
    Zhou, Jiaju
    Jiao, Yuxiao
    Zeng, Bin
    Wang, Nan
    Wan, Li
    Zhang, Haoxiang
    Liu, Shengzhong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (17): : 7007 - 7025
  • [6] A Polarized Gel Electrolyte for Wide-Temperature Flexible Zinc-Air Batteries
    Jiao, Miaolun
    Dai, Lixin
    Ren, Hong-Rui
    Zhang, Mengtian
    Xiao, Xiao
    Wang, Boran
    Yang, Jinlong
    Liu, Bilu
    Zhou, Guangmin
    Cheng, Hui-Ming
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (20)
  • [7] Gel Polymer Electrolyte for Zinc-air Battery
    Zahid, A. R. M.
    Masri, M. N.
    Hussin, M. H.
    Abu Bakar, M. B.
    GREEN DESIGN AND MANUFACTURE: ADVANCED AND EMERGING APPLICATIONS, 2018, 2030
  • [8] Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries
    Fu, Jing
    Lee, Dong Un
    Hassan, Fathy Mohamed
    Yang, Lin
    Bai, Zhengyu
    Park, Moon Gyu
    Chen, Zhongwei
    ADVANCED MATERIALS, 2015, 27 (37) : 5617 - 5622
  • [9] Compositional Effects of Gel Polymer Electrolyte and Battery Design for Zinc-Air Batteries
    Tran, Thuy Nguyen Thanh
    Aasen, Drew
    Zhalmuratova, Dinara
    Labbe, Matthew
    Chung, Hyun-Joong
    Ivey, Douglas G.
    BATTERIES & SUPERCAPS, 2020, 3 (09) : 917 - 927
  • [10] Compositional Effects of Gel Polymer Electrolyte and Battery Design for Zinc-Air Batteries
    Tran, Thuy Nguyen Thanh
    Aasen, Drew
    Zhalmuratova, Dinara
    Labbe, Matthew
    Chung, Hyun-Joong
    Ivey, Douglas G.
    Batteries and Supercaps, 2020, 3 (09): : 917 - 927