Mechanocatalytic H2O2 production using ferroelectric KSr2Nb3Ta2O15 nanorods

被引:0
|
作者
Jin, Zuheng [1 ]
Lu, Manli [1 ]
Jiang, Chuan [1 ]
Wu, Sha [1 ]
Tang, Liupan [1 ]
Hu, Changzheng [1 ,2 ]
Liu, Laijun [1 ,2 ]
Fang, Liang [1 ,2 ]
Cheng, Zhenxiang [3 ]
机构
[1] Guilin Univ Technol, Coll Mat Sci & Engn, Key Lab New Proc Technol Nonferrous Met & Mat, Minist Educ, Guilin 541004, Peoples R China
[2] Guilin Univ Technol, Collaborat Innovat Ctr Exploat Nonferrous Met Depo, Guangxi Key Lab Opt & Elect Mat & Devices, Guilin 541004, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn & Informat Sci, Squires Way,Innovat Campus, North Wollongong, NSW 2500, Australia
基金
中国国家自然科学基金;
关键词
Mechanocatalysis; Ferroelectric; Nanorod; H; 2; O; production; Electron transfer; PHOTOCATALYTIC ACTIVITY; TRIBOCATALYTIC DEGRADATION; ENERGY; POLARIZATION; SEPARATION; REDUCTION; OXIDATION;
D O I
10.1016/j.nanoen.2025.110892
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Traditional methods of hydrogen peroxide (H2O2) production, such as the anthraquinone process and electrolysis, face challenges including high costs, significant energy consumption, and strict electrode requirements. Therefore, this study proposes a mechanocatalytic approach for H2O2 production. By utilizing the molten-salt method, KSr2Nb3Ta2O15 ferroelectric nanorods were synthesized to achieve a mechanocatalytic H2O2 yield of 117 mu mol/L/h in a glass beaker equipped with a PTFE disk. Remarkably, substituting the glass beaker with a ZrO2 ball mill for the mechanocatalytic experiments significantly increased the H2O2 yield to 820 mu mol/L/h. The Piezoelectric Force Microscopy (PFM), Scanning Electron Microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis revealed that the inherent electric field of ferroelectric materials and the abundant specific surface area on the KSr2Nb3Ta2O15 nanorod surface enhance electron transfer during the mechanocatalytic process. Rotating Ring-Disk Electrode tests indicated that the mechanocatalytic one-step two-electron pathway dominates H2O2 generation through mechanocatalysis with an 85 % selectivity rate, surpassing conventional two-step one-electron pathway efficiency in oxygen reduction reaction. Output charge testing of vertical contact separation mode triboelectric nanogenerator (CS-TENG) determines the ability of a material to gain or lose electrons during friction processes. This breakthrough presents a novel and efficient method for H2O2 production via mechanocatalysis. Using the molten-salt method, KSr2Nb3Ta2O15 ferroelectric nanorods were synthesized, resulting in a mechanocatalytic H2O2 yield of 820 mu mol/L/h in a ball mill jar. Comprehensive analysis utilizing PFM, SEM, BET, RRDE, CS-TENG and by comparing the effect of mechanocatalysis with different materials demonstrated that the built-in electric field of ferroelectric materials enhance electron transfer in the mechanocatalytic process. This breakthrough presents a novel and efficient method for H2O2 production through mechanocatalysis.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] FERROELECTRIC AND OPTICAL PROPERTIES OF KSR2NB5O15
    GIESS, EA
    BURNS, G
    OKANE, DF
    SMITH, AW
    APPLIED PHYSICS LETTERS, 1967, 11 (07) : 233 - +
  • [2] Synergistic effects of Bi2O3 and Ta2O5 for efficient electrochemical production of H2O2
    Jiang, Chenghang
    Fei, Yan-Fei
    Xu, Weiwei
    Bao, Zhikang
    Shao, Yizhen
    Zhang, Shijie
    Hu, Zhong-Ting
    Wang, Jianguo
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 334
  • [3] A Duplex Structure in Dense KSr2Nb5O15 Ferroelectric Ceramics
    Liu, Liangliang
    Gao, Feng
    FERROELECTRICS, 2015, 474 (01) : 99 - 104
  • [4] Processing and ferroelectric behavior of textured KSr2Nb5O15 ceramics
    Duran, Cihangir
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (22) : 7620 - 7627
  • [5] Processing and ferroelectric behavior of textured KSr2Nb5O15 ceramics
    Cihangir Duran
    Journal of Materials Science, 2006, 41 : 7620 - 7627
  • [6] H2O2/O-3, H2O2/UV AND H2O2/FE2+ PROCESSES FOR THE OXIDATION OF HAZARDOUS WASTES
    SCHULTE, P
    BAYER, A
    KUHN, F
    LUY, T
    VOLKMER, M
    OZONE-SCIENCE & ENGINEERING, 1995, 17 (02) : 119 - 134
  • [7] PRODUCTION H2O2 ABROAD
    KOSAREVA, VF
    CHESALOVA, VS
    SHISHKINA, AP
    DERBENZEV, YI
    KHIMICHESKAYA PROMYSHLENNOST, 1977, (03): : 229 - 231
  • [8] Formation process of a duplex structure in KSr2Nb5O15 ferroelectric ceramics
    Liangliang Liu
    Yongmei Zhang
    Zhaoping Hou
    Feng Gao
    Journal of Materials Science: Materials in Electronics, 2016, 27 : 11055 - 11063
  • [9] Crystallographic properties of KSr2Nb5O15
    Lanfredi, S
    Cardoso, CX
    Nobre, MAL
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 112 (2-3): : 139 - 143
  • [10] DOMAIN EFFECTS IN FERROELECTRIC TUNGSTEN-BRONZE, KSR2NB5O15
    CLARKE, R
    BURFOOT, JC
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1975, 8 (09) : 1115 - 1119